A |
a_str [Lacaml__utils] |
|
ab_str [Lacaml__utils] |
|
abs [Lacaml__S.Mat] |
abs ?m ?n ?br ?bc ?b ?ar ?ac a computes the absolute value of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
abs [Lacaml__S.Vec] |
abs ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the absolute value
of n elements of the vector x using incx as incremental
steps.
|
abs [Lacaml__D.Mat] |
abs ?m ?n ?br ?bc ?b ?ar ?ac a computes the absolute value of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
abs [Lacaml__D.Vec] |
abs ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the absolute value
of n elements of the vector x using incx as incremental
steps.
|
acos [Lacaml__S.Mat] |
acos ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc cosine of the
elements in the m by n sub-matrix of the matrix a starting in row
ar and column ac .
|
acos [Lacaml__S.Vec] |
acos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc cosine of n
elements of the vector x using incx as incremental steps.
|
acos [Lacaml__D.Mat] |
acos ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc cosine of the
elements in the m by n sub-matrix of the matrix a starting in row
ar and column ac .
|
acos [Lacaml__D.Vec] |
acos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc cosine of n
elements of the vector x using incx as incremental steps.
|
acosh [Lacaml__S.Mat] |
acosh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc cosine of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
acosh [Lacaml__S.Vec] |
cosh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc cosine of
n elements of the vector x using incx as incremental steps.
|
acosh [Lacaml__D.Mat] |
acosh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc cosine of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
acosh [Lacaml__D.Vec] |
cosh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc cosine of
n elements of the vector x using incx as incremental steps.
|
add [Lacaml__C.Mat] |
add ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the sum of the m
by n sub-matrix of the matrix a starting in row ar and column ac
with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
add [Lacaml__C.Vec] |
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
add [Lacaml__Z.Mat] |
add ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the sum of the m
by n sub-matrix of the matrix a starting in row ar and column ac
with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
add [Lacaml__Z.Vec] |
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
add [Lacaml__S.Mat] |
add ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the sum of the m
by n sub-matrix of the matrix a starting in row ar and column ac
with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
add [Lacaml__S.Vec] |
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
add [Lacaml__D.Mat] |
add ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the sum of the m
by n sub-matrix of the matrix a starting in row ar and column ac
with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
add [Lacaml__D.Vec] |
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
add_const [Lacaml__C.Mat] |
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the
designated m by n submatrix in a and stores the result in the
designated submatrix in b .
|
add_const [Lacaml__C.Vec] |
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n
elements of vector x and stores the result in y , using incx and incy
as incremental steps respectively.
|
add_const [Lacaml__Z.Mat] |
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the
designated m by n submatrix in a and stores the result in the
designated submatrix in b .
|
add_const [Lacaml__Z.Vec] |
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n
elements of vector x and stores the result in y , using incx and incy
as incremental steps respectively.
|
add_const [Lacaml__S.Mat] |
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the
designated m by n submatrix in a and stores the result in the
designated submatrix in b .
|
add_const [Lacaml__S.Vec] |
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n
elements of vector x and stores the result in y , using incx and incy
as incremental steps respectively.
|
add_const [Lacaml__D.Mat] |
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the
designated m by n submatrix in a and stores the result in the
designated submatrix in b .
|
add_const [Lacaml__D.Vec] |
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n
elements of vector x and stores the result in y , using incx and incy
as incremental steps respectively.
|
alphas_str [Lacaml__utils] |
|
amax [Lacaml__C] |
|
amax [Lacaml__Z] |
|
amax [Lacaml__S] |
|
amax [Lacaml__D] |
|
ap_str [Lacaml__utils] |
|
append [Lacaml__C.Vec] |
|
append [Lacaml__Z.Vec] |
|
append [Lacaml__S.Vec] |
|
append [Lacaml__D.Vec] |
|
as_vec [Lacaml__C.Mat] |
|
as_vec [Lacaml__Z.Mat] |
|
as_vec [Lacaml__S.Mat] |
|
as_vec [Lacaml__D.Mat] |
|
asin [Lacaml__S.Mat] |
asin ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc sine of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
asin [Lacaml__S.Vec] |
asin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc sine of n elements
of the vector x using incx as incremental steps.
|
asin [Lacaml__D.Mat] |
asin ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc sine of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
asin [Lacaml__D.Vec] |
asin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc sine of n elements
of the vector x using incx as incremental steps.
|
asinh [Lacaml__S.Mat] |
asinh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc sine of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
asinh [Lacaml__S.Vec] |
asinh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc sine of
n elements of the vector x using incx as incremental steps.
|
asinh [Lacaml__D.Mat] |
asinh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc sine of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
asinh [Lacaml__D.Vec] |
asinh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc sine of
n elements of the vector x using incx as incremental steps.
|
asum [Lacaml__S] |
asum ?n ?ofsx ?incx x see BLAS documentation!
|
asum [Lacaml__D] |
asum ?n ?ofsx ?incx x see BLAS documentation!
|
atan [Lacaml__S.Mat] |
atan ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc tangent of the
elements in the m by n sub-matrix of the matrix a starting in row
ar and column ac .
|
atan [Lacaml__S.Vec] |
atan ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc tangent of
n elements of the vector x using incx as incremental steps.
|
atan [Lacaml__D.Mat] |
atan ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc tangent of the
elements in the m by n sub-matrix of the matrix a starting in row
ar and column ac .
|
atan [Lacaml__D.Vec] |
atan ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc tangent of
n elements of the vector x using incx as incremental steps.
|
atan2 [Lacaml__S.Mat] |
atan2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes atan2(a, b) for the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
atan2 [Lacaml__S.Vec] |
atan2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes
atan2(x, y) of n elements of vectors x and y elementwise, using
incx and incy as incremental steps respectively.
|
atan2 [Lacaml__D.Mat] |
atan2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes atan2(a, b) for the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
atan2 [Lacaml__D.Vec] |
atan2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes
atan2(x, y) of n elements of vectors x and y elementwise, using
incx and incy as incremental steps respectively.
|
atanh [Lacaml__S.Mat] |
atanh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc tangent of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
atanh [Lacaml__S.Vec] |
atanh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc
tangent of n elements of the vector x using incx as incremental
steps.
|
atanh [Lacaml__D.Mat] |
atanh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc tangent of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
atanh [Lacaml__D.Vec] |
atanh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc
tangent of n elements of the vector x using incx as incremental
steps.
|
axpy [Lacaml__C.Mat] |
axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for
matrices.
|
axpy [Lacaml__C] |
axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
axpy [Lacaml__Z.Mat] |
axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for
matrices.
|
axpy [Lacaml__Z] |
axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
axpy [Lacaml__S.Mat] |
axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for
matrices.
|
axpy [Lacaml__S] |
axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
axpy [Lacaml__D.Mat] |
axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for
matrices.
|
axpy [Lacaml__D] |
axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
B |
b_str [Lacaml__utils] |
|
bad_inc [Lacaml__utils] |
|
bad_n [Lacaml__utils] |
|
bad_ofs [Lacaml__utils] |
|
bc_str [Lacaml__utils] |
|
br_str [Lacaml__utils] |
|
C |
c_str [Lacaml__utils] |
|
calc_mat_max_cols [Lacaml__utils] |
calc_mat_max_cols ~dim2 ~c
|
calc_mat_max_rows [Lacaml__utils] |
calc_mat_max_rows ~dim1 ~r
|
calc_mat_opt_max_cols [Lacaml__utils] |
calc_mat_opt_max_cols ?c dim1
|
calc_mat_opt_max_rows [Lacaml__utils] |
calc_mat_opt_max_rows ?r dim1
|
calc_unpacked_dim [Lacaml__utils] |
|
calc_vec_max_n [Lacaml__utils] |
calc_vec_max_n ~dim ~ofs ~inc
|
calc_vec_min_dim [Lacaml__utils] |
calc_vec_min_dim ~n ~ofs ~inc
|
calc_vec_opt_max_n [Lacaml__utils] |
calc_vec_opt_max_n ?ofs ?inc dim
|
cbrt [Lacaml__S.Mat] |
cbrt ?m ?n ?br ?bc ?b ?ar ?ac a computes the cubic root of the
elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
cbrt [Lacaml__S.Vec] |
cbrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cubic root
of n elements of the vector x using incx as incremental
steps.
|
cbrt [Lacaml__D.Mat] |
cbrt ?m ?n ?br ?bc ?b ?ar ?ac a computes the cubic root of the
elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
cbrt [Lacaml__D.Vec] |
cbrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cubic root
of n elements of the vector x using incx as incremental
steps.
|
cc_str [Lacaml__utils] |
|
ceil [Lacaml__S.Mat] |
ceil ?m ?n ?br ?bc ?b ?ar ?ac a computes the ceiling of the elements
in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
ceil [Lacaml__S.Vec] |
ceil ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the ceiling of n
elements of the vector x using incx as incremental steps.
|
ceil [Lacaml__D.Mat] |
ceil ?m ?n ?br ?bc ?b ?ar ?ac a computes the ceiling of the elements
in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
ceil [Lacaml__D.Vec] |
ceil ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the ceiling of n
elements of the vector x using incx as incremental steps.
|
check_dim1_mat [Lacaml__utils] |
|
check_dim2_mat [Lacaml__utils] |
|
check_dim_mat [Lacaml__utils] |
|
check_mat_c [Lacaml__utils] |
check_mat_c ~loc ~vec_name ~c ~max_c checks whether matrix column
offset c for vector of name vec_name is invalid (i.e.
|
check_mat_cols [Lacaml__utils] |
check_mat_cols ~loc ~mat_name ~dim2 ~c ~p ~param_name checks the
matrix column operation length in parameter p with name param_name
at location loc for matrix with name mat_name and dimension dim2
given the operation column c .
|
check_mat_empty [Lacaml__utils] |
|
check_mat_m [Lacaml__utils] |
check_mat_m ~loc ~mat_name ~dim1 ~r ~m checks the matrix row operation
length in parameter m at location loc for matrix with name mat_name
and dimension dim1 given the operation row r .
|
check_mat_min_dim1 [Lacaml__utils] |
check_mat_min_dim1 ~loc ~mat_name ~dim1 ~min_dim1 checks the minimum
row dimension min_dim1 of a matrix with name mat_name at location
loc given its row dimension dim1 .
|
check_mat_min_dim2 [Lacaml__utils] |
check_mat_min_dim2 ~loc ~mat_name ~dim2 ~min_dim2 checks the minimum
column dimension min_dim2 of a matrix with name mat_name at location
loc given its column dimension dim2 .
|
check_mat_min_dims [Lacaml__utils] |
check_mat_min_dim2 ~loc ~mat_name ~dim2 ~min_dim2 checks the minimum
column dimension min_dim2 of a matrix with name mat_name at location
loc given its column dimension dim2 .
|
check_mat_mn [Lacaml__utils] |
check_mat_mn ~loc ~mat_name ~dim1 ~dim2 ~r ~c ~m ~n checks the matrix
operation lengths in parameters m and n at location loc for matrix
with name mat_name and dimensions dim1 and dim2 given the operation
row r and column c .
|
check_mat_n [Lacaml__utils] |
check_mat_n ~loc ~mat_name ~dim2 ~c ~n checks the matrix column
operation length in parameter n at location loc for matrix with
name mat_name and dimension dim2 given the operation column c .
|
check_mat_r [Lacaml__utils] |
check_mat_r ~loc ~vec_name ~r ~max_r checks whether matrix row
offset r for vector of name vec_name is invalid (i.e.
|
check_mat_rows [Lacaml__utils] |
check_mat_rows ~loc ~mat_name ~dim1 ~r ~p ~param_name checks the matrix
row operation length in parameter p with name param_name at
location loc for matrix with name mat_name and dimension dim1
given the operation row r .
|
check_mat_square [Lacaml__utils] |
|
check_var_lt0 [Lacaml__utils] |
check_var_lt0 ~loc ~name var checks whether integer variable var with
name name at location loc is lower than 0 .
|
check_var_within [Lacaml__utils] |
|
check_vec [Lacaml__utils] |
|
check_vec_dim [Lacaml__utils] |
check_vec_dim ~loc ~vec_name ~dim ~ofs ~inc ~n_name ~n checks the vector
operation length in parameter n with name n_name at location loc
for vector with name vec_name and dimension dim given the operation
offset ofs and increment inc .
|
check_vec_empty [Lacaml__utils] |
|
check_vec_inc [Lacaml__utils] |
check_vec_inc ~loc ~vec_name inc checks whether vector increment inc
for vector of name vec_name is invalid (i.e.
|
check_vec_is_perm [Lacaml__utils] |
check_vec_is_perm loc vec_name vec n checks whether vec
is a valid permutation vector.
|
check_vec_min_dim [Lacaml__utils] |
check_vec_min_dim ~loc ~vec_name ~dim ~min_dim checks whether vector
with name vec_name and dimension dim satisfies minimum dimension
min_dim .
|
check_vec_ofs [Lacaml__utils] |
check_vec_ofs ~loc ~vec_name ~ofs ~max_ofs checks whether vector
offset ofs for vector of name vec_name is invalid (i.e.
|
cmab [Lacaml__S.Mat] |
cmab ?m ?n ?cr ?cc c ?ar ?ac a ?br ?bc b multiplies designated m -by-n
range of elements of matrices a and b elementwise, and subtracts the
result from and stores it in the specified range in c .
|
cmab [Lacaml__D.Mat] |
cmab ?m ?n ?cr ?cc c ?ar ?ac a ?br ?bc b multiplies designated m -by-n
range of elements of matrices a and b elementwise, and subtracts the
result from and stores it in the specified range in c .
|
col [Lacaml__C.Mat] |
|
col [Lacaml__Z.Mat] |
|
col [Lacaml__S.Mat] |
|
col [Lacaml__D.Mat] |
|
concat [Lacaml__C.Vec] |
|
concat [Lacaml__Z.Vec] |
|
concat [Lacaml__S.Vec] |
|
concat [Lacaml__D.Vec] |
|
copy [Lacaml__C] |
copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!
|
copy [Lacaml__Z] |
copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!
|
copy [Lacaml__S] |
copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!
|
copy [Lacaml__D] |
copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!
|
copy_diag [Lacaml__C.Mat] |
copy_diag ?n ?ofsy ?incy ?y ?ar ?ac a
|
copy_diag [Lacaml__Z.Mat] |
copy_diag ?n ?ofsy ?incy ?y ?ar ?ac a
|
copy_diag [Lacaml__S.Mat] |
copy_diag ?n ?ofsy ?incy ?y ?ar ?ac a
|
copy_diag [Lacaml__D.Mat] |
copy_diag ?n ?ofsy ?incy ?y ?ar ?ac a
|
copy_row [Lacaml__C.Mat] |
|
copy_row [Lacaml__Z.Mat] |
|
copy_row [Lacaml__S.Mat] |
|
copy_row [Lacaml__D.Mat] |
|
cos [Lacaml__S.Mat] |
cos ?m ?n ?br ?bc ?b ?ar ?ac a computes the cosine of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
cos [Lacaml__S.Vec] |
cos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cosine of n elements
of the vector x using incx as incremental steps.
|
cos [Lacaml__D.Mat] |
cos ?m ?n ?br ?bc ?b ?ar ?ac a computes the cosine of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
cos [Lacaml__D.Vec] |
cos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cosine of n elements
of the vector x using incx as incremental steps.
|
cosh [Lacaml__S.Mat] |
cosh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic cosine of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
cosh [Lacaml__S.Vec] |
cosh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic cosine of
n elements of the vector x using incx as incremental steps.
|
cosh [Lacaml__D.Mat] |
cosh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic cosine of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
cosh [Lacaml__D.Vec] |
cosh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic cosine of
n elements of the vector x using incx as incremental steps.
|
cpab [Lacaml__S.Mat] |
cpab ?m ?n ?cr ?cc c ?ar ?ac a ?br ?bc b multiplies designated m -by-n
range of elements of matrices a and b elementwise, and adds the
result to and stores it in the specified range in c .
|
cpab [Lacaml__D.Mat] |
cpab ?m ?n ?cr ?cc c ?ar ?ac a ?br ?bc b multiplies designated m -by-n
range of elements of matrices a and b elementwise, and adds the
result to and stores it in the specified range in c .
|
cr_str [Lacaml__utils] |
|
create [Lacaml__C.Mat] |
|
create [Lacaml__C.Vec] |
|
create [Lacaml__Z.Mat] |
|
create [Lacaml__Z.Vec] |
|
create [Lacaml__S.Mat] |
|
create [Lacaml__S.Vec] |
|
create [Lacaml__D.Mat] |
|
create [Lacaml__D.Vec] |
|
create [Lacaml__io.Context] |
|
create_int32_vec [Lacaml__common] |
|
create_int_vec [Lacaml__common] |
|
create_mvec [Lacaml__C.Mat] |
|
create_mvec [Lacaml__Z.Mat] |
|
create_mvec [Lacaml__S.Mat] |
|
create_mvec [Lacaml__D.Mat] |
|
D |
d_str [Lacaml__utils] |
|
detri [Lacaml__C.Mat] |
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a , i.e.
|
detri [Lacaml__Z.Mat] |
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a , i.e.
|
detri [Lacaml__S.Mat] |
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a , i.e.
|
detri [Lacaml__D.Mat] |
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a , i.e.
|
dim [Lacaml__C.Vec] |
|
dim [Lacaml__Z.Vec] |
|
dim [Lacaml__S.Vec] |
|
dim [Lacaml__D.Vec] |
|
dim1 [Lacaml__C.Mat] |
|
dim1 [Lacaml__Z.Mat] |
|
dim1 [Lacaml__S.Mat] |
|
dim1 [Lacaml__D.Mat] |
|
dim2 [Lacaml__C.Mat] |
|
dim2 [Lacaml__Z.Mat] |
|
dim2 [Lacaml__S.Mat] |
|
dim2 [Lacaml__D.Mat] |
|
div [Lacaml__C.Mat] |
div ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the division of the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
div [Lacaml__C.Vec] |
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
div [Lacaml__Z.Mat] |
div ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the division of the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
div [Lacaml__Z.Vec] |
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
div [Lacaml__S.Mat] |
div ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the division of the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
div [Lacaml__S.Vec] |
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
div [Lacaml__D.Mat] |
div ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the division of the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
div [Lacaml__D.Vec] |
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
dl_str [Lacaml__utils] |
|
dot [Lacaml__S] |
dot ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
dot [Lacaml__D] |
dot ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
dotc [Lacaml__C] |
dotc ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
dotc [Lacaml__Z] |
dotc ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
dotu [Lacaml__C] |
dotu ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
dotu [Lacaml__Z] |
dotu ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
du_str [Lacaml__utils] |
|
dummy_select_fun [Lacaml__utils] |
|
E |
e_str [Lacaml__utils] |
|
ellipsis_default [Lacaml__io.Context] |
|
empty [Lacaml__C.Mat] |
|
empty [Lacaml__C.Vec] |
|
empty [Lacaml__Z.Mat] |
|
empty [Lacaml__Z.Vec] |
|
empty [Lacaml__S.Mat] |
|
empty [Lacaml__S.Vec] |
|
empty [Lacaml__D.Mat] |
|
empty [Lacaml__D.Vec] |
|
empty_int32_vec [Lacaml__utils] |
|
erf [Lacaml__S.Mat] |
erf ?m ?n ?br ?bc ?b ?ar ?ac a computes the error function of the elements
in the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
erf [Lacaml__S.Vec] |
erf ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the error function for
n elements of the vector x using incx as incremental steps.
|
erf [Lacaml__D.Mat] |
erf ?m ?n ?br ?bc ?b ?ar ?ac a computes the error function of the elements
in the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
erf [Lacaml__D.Vec] |
erf ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the error function for
n elements of the vector x using incx as incremental steps.
|
erfc [Lacaml__S.Mat] |
erfc ?m ?n ?br ?bc ?b ?ar ?ac a computes the complementary error
function of the elements in the m by n sub-matrix of the matrix a
starting in row ar and column ac .
|
erfc [Lacaml__S.Vec] |
erfc ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the complementary error
function for n elements of the vector x using incx as incremental
steps.
|
erfc [Lacaml__D.Mat] |
erfc ?m ?n ?br ?bc ?b ?ar ?ac a computes the complementary error
function of the elements in the m by n sub-matrix of the matrix a
starting in row ar and column ac .
|
erfc [Lacaml__D.Vec] |
erfc ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the complementary error
function for n elements of the vector x using incx as incremental
steps.
|
exp [Lacaml__S.Mat] |
exp ?m ?n ?br ?bc ?b ?ar ?ac a computes the exponential of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
exp [Lacaml__S.Vec] |
exp ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the exponential
of n elements of the vector x using incx as incremental
steps.
|
exp [Lacaml__D.Mat] |
exp ?m ?n ?br ?bc ?b ?ar ?ac a computes the exponential of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
exp [Lacaml__D.Vec] |
exp ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the exponential
of n elements of the vector x using incx as incremental
steps.
|
exp2 [Lacaml__S.Mat] |
exp2 ?m ?n ?br ?bc ?b ?ar ?ac a computes the base-2 exponential of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
exp2 [Lacaml__S.Vec] |
exp2 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-2 exponential
of n elements of the vector x using incx as incremental steps.
|
exp2 [Lacaml__D.Mat] |
exp2 ?m ?n ?br ?bc ?b ?ar ?ac a computes the base-2 exponential of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
exp2 [Lacaml__D.Vec] |
exp2 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-2 exponential
of n elements of the vector x using incx as incremental steps.
|
expm1 [Lacaml__S.Mat] |
expm1 ?m ?n ?br ?bc ?b ?ar ?ac a computes exp a -. 1. of the elements
in the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
expm1 [Lacaml__S.Vec] |
expm1 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes exp x -. 1.
for n elements of the vector x using incx as incremental steps.
|
expm1 [Lacaml__D.Mat] |
expm1 ?m ?n ?br ?bc ?b ?ar ?ac a computes exp a -. 1. of the elements
in the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
expm1 [Lacaml__D.Vec] |
expm1 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes exp x -. 1.
for n elements of the vector x using incx as incremental steps.
|
F |
fill [Lacaml__C.Mat] |
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value
x .
|
fill [Lacaml__C.Vec] |
fill ?n ?ofsx ?incx x a fills vector x with value a in the
designated range.
|
fill [Lacaml__Z.Mat] |
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value
x .
|
fill [Lacaml__Z.Vec] |
fill ?n ?ofsx ?incx x a fills vector x with value a in the
designated range.
|
fill [Lacaml__S.Mat] |
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value
x .
|
fill [Lacaml__S.Vec] |
fill ?n ?ofsx ?incx x a fills vector x with value a in the
designated range.
|
fill [Lacaml__D.Mat] |
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value
x .
|
fill [Lacaml__D.Vec] |
fill ?n ?ofsx ?incx x a fills vector x with value a in the
designated range.
|
floor [Lacaml__S.Mat] |
floor ?m ?n ?br ?bc ?b ?ar ?ac a computes the floor of the elements
in the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
floor [Lacaml__S.Vec] |
floor ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the floor of n
elements of the vector x using incx as incremental steps.
|
floor [Lacaml__D.Mat] |
floor ?m ?n ?br ?bc ?b ?ar ?ac a computes the floor of the elements
in the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
floor [Lacaml__D.Vec] |
floor ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the floor of n
elements of the vector x using incx as incremental steps.
|
fold [Lacaml__C.Vec] |
fold f a ?n ?ofsx ?incx x is
f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx}
if incx > 0 and the same in the reverse order of appearance of the
x values if incx < 0 .
|
fold [Lacaml__Z.Vec] |
fold f a ?n ?ofsx ?incx x is
f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx}
if incx > 0 and the same in the reverse order of appearance of the
x values if incx < 0 .
|
fold [Lacaml__S.Vec] |
fold f a ?n ?ofsx ?incx x is
f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx}
if incx > 0 and the same in the reverse order of appearance of the
x values if incx < 0 .
|
fold [Lacaml__D.Vec] |
fold f a ?n ?ofsx ?incx x is
f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx}
if incx > 0 and the same in the reverse order of appearance of the
x values if incx < 0 .
|
fold_cols [Lacaml__C.Mat] |
|
fold_cols [Lacaml__Z.Mat] |
|
fold_cols [Lacaml__S.Mat] |
|
fold_cols [Lacaml__D.Mat] |
|
from_col_vec [Lacaml__C.Mat] |
|
from_col_vec [Lacaml__Z.Mat] |
|
from_col_vec [Lacaml__S.Mat] |
|
from_col_vec [Lacaml__D.Mat] |
|
from_row_vec [Lacaml__C.Mat] |
|
from_row_vec [Lacaml__Z.Mat] |
|
from_row_vec [Lacaml__S.Mat] |
|
from_row_vec [Lacaml__D.Mat] |
|
G |
gXmv_get_params [Lacaml__utils] |
|
gbmv [Lacaml__C] |
gbmv
?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x
see BLAS documentation!
|
gbmv [Lacaml__Z] |
gbmv
?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x
see BLAS documentation!
|
gbmv [Lacaml__S] |
gbmv
?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x
see BLAS documentation!
|
gbmv [Lacaml__D] |
gbmv
?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x
see BLAS documentation!
|
gbsv [Lacaml__C] |
gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is a band matrix of order n with kl subdiagonals and ku
superdiagonals, and X and b are n -by-nrhs matrices.
|
gbsv [Lacaml__Z] |
gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is a band matrix of order n with kl subdiagonals and ku
superdiagonals, and X and b are n -by-nrhs matrices.
|
gbsv [Lacaml__S] |
gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is a band matrix of order n with kl subdiagonals and ku
superdiagonals, and X and b are n -by-nrhs matrices.
|
gbsv [Lacaml__D] |
gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is a band matrix of order n with kl subdiagonals and ku
superdiagonals, and X and b are n -by-nrhs matrices.
|
geXrf_get_params [Lacaml__utils] |
|
gecon [Lacaml__C] |
gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a
|
gecon [Lacaml__Z] |
gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a
|
gecon [Lacaml__S] |
gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a
|
gecon [Lacaml__D] |
gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a
|
gecon_err [Lacaml__utils] |
|
gecon_min_liwork [Lacaml__S] |
|
gecon_min_liwork [Lacaml__D] |
|
gecon_min_lrwork [Lacaml__C] |
|
gecon_min_lrwork [Lacaml__Z] |
|
gecon_min_lwork [Lacaml__C] |
|
gecon_min_lwork [Lacaml__Z] |
|
gecon_min_lwork [Lacaml__S] |
|
gecon_min_lwork [Lacaml__D] |
|
gees [Lacaml__C] |
gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a
See gees -function for details about arguments.
|
gees [Lacaml__Z] |
gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a
See gees -function for details about arguments.
|
gees [Lacaml__S] |
gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a
See gees -function for details about arguments.
|
gees [Lacaml__D] |
gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a
See gees -function for details about arguments.
|
gees_err [Lacaml__utils] |
|
gees_get_params_complex [Lacaml__utils] |
|
gees_get_params_generic [Lacaml__utils] |
|
gees_get_params_real [Lacaml__utils] |
|
geev [Lacaml__C] |
geev ?work ?rwork ?n
?vlr ?vlc ?vl
?vrr ?vrc ?vr
?ofsw w
?ar ?ac a
|
geev [Lacaml__Z] |
geev ?work ?rwork ?n
?vlr ?vlc ?vl
?vrr ?vrc ?vr
?ofsw w
?ar ?ac a
|
geev [Lacaml__S] |
geev ?work ?n
?vlr ?vlc ?vl
?vrr ?vrc ?vr
?ofswr ?wr ?ofswi ?wi
?ar ?ac a
|
geev [Lacaml__D] |
geev ?work ?n
?vlr ?vlc ?vl
?vrr ?vrc ?vr
?ofswr ?wr ?ofswi ?wi
?ar ?ac a
|
geev_gen_get_params [Lacaml__utils] |
|
geev_get_job_side [Lacaml__utils] |
|
geev_min_lrwork [Lacaml__C] |
|
geev_min_lrwork [Lacaml__Z] |
|
geev_min_lwork [Lacaml__C] |
|
geev_min_lwork [Lacaml__Z] |
|
geev_min_lwork [Lacaml__S] |
|
geev_min_lwork [Lacaml__D] |
|
geev_opt_lwork [Lacaml__C] |
geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a
See geev -function for details about arguments.
|
geev_opt_lwork [Lacaml__Z] |
geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a
See geev -function for details about arguments.
|
geev_opt_lwork [Lacaml__S] |
geev_opt_lwork
?n
?vlr ?vlc ?vl
?vrr ?vrc ?vr
?ofswr wr
?ofswi wi
?ar ?ac a
See geev -function for details about arguments.
|
geev_opt_lwork [Lacaml__D] |
geev_opt_lwork
?n
?vlr ?vlc ?vl
?vrr ?vrc ?vr
?ofswr wr
?ofswi wi
?ar ?ac a
See geev -function for details about arguments.
|
gels [Lacaml__C] |
gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see
LAPACK documentation!
|
gels [Lacaml__Z] |
gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see
LAPACK documentation!
|
gels [Lacaml__S] |
gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see
LAPACK documentation!
|
gels [Lacaml__D] |
gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see
LAPACK documentation!
|
gelsX_err [Lacaml__utils] |
|
gelsX_get_params [Lacaml__utils] |
|
gelsX_get_s [Lacaml__utils] |
|
gels_min_lwork [Lacaml__C] |
gels_min_lwork ~m ~n ~nrhs
|
gels_min_lwork [Lacaml__Z] |
gels_min_lwork ~m ~n ~nrhs
|
gels_min_lwork [Lacaml__S] |
gels_min_lwork ~m ~n ~nrhs
|
gels_min_lwork [Lacaml__D] |
gels_min_lwork ~m ~n ~nrhs
|
gels_opt_lwork [Lacaml__C] |
gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b
|
gels_opt_lwork [Lacaml__Z] |
gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b
|
gels_opt_lwork [Lacaml__S] |
gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b
|
gels_opt_lwork [Lacaml__D] |
gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b
|
gelsd [Lacaml__S] |
gelsd ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs b
see LAPACK documentation!
|
gelsd [Lacaml__D] |
gelsd ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs b
see LAPACK documentation!
|
gelsd_min_iwork [Lacaml__S] |
|
gelsd_min_iwork [Lacaml__D] |
|
gelsd_min_lwork [Lacaml__S] |
gelsd_min_lwork ~m ~n ~nrhs
|
gelsd_min_lwork [Lacaml__D] |
gelsd_min_lwork ~m ~n ~nrhs
|
gelsd_opt_lwork [Lacaml__S] |
gelsd_opt_lwork ?m ?n ?ar ?ac a ?nrhs b
|
gelsd_opt_lwork [Lacaml__D] |
gelsd_opt_lwork ?m ?n ?ar ?ac a ?nrhs b
|
gelss [Lacaml__S] |
gelss ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs ?br ?bc b
see LAPACK documentation!
|
gelss [Lacaml__D] |
gelss ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs ?br ?bc b
see LAPACK documentation!
|
gelss_min_lwork [Lacaml__S] |
gelss_min_lwork ~m ~n ~nrhs
|
gelss_min_lwork [Lacaml__D] |
gelss_min_lwork ~m ~n ~nrhs
|
gelss_opt_lwork [Lacaml__S] |
gelss_opt_lwork ?ar ?ac a ?m ?n ?nrhs ?br ?bc b
|
gelss_opt_lwork [Lacaml__D] |
gelss_opt_lwork ?ar ?ac a ?m ?n ?nrhs ?br ?bc b
|
gelsy [Lacaml__S] |
gelsy ?m ?n ?ar ?ac a ?rcond ?jpvt ?ofswork ?work ?nrhs b see LAPACK
documentation!
|
gelsy [Lacaml__D] |
gelsy ?m ?n ?ar ?ac a ?rcond ?jpvt ?ofswork ?work ?nrhs b see LAPACK
documentation!
|
gelsy_min_lwork [Lacaml__S] |
gelsy_min_lwork ~m ~n ~nrhs
|
gelsy_min_lwork [Lacaml__D] |
gelsy_min_lwork ~m ~n ~nrhs
|
gelsy_opt_lwork [Lacaml__S] |
gelsy_opt_lwork ?m ?n ?ar ?ac a ?nrhs ?br ?bc b
|
gelsy_opt_lwork [Lacaml__D] |
gelsy_opt_lwork ?m ?n ?ar ?ac a ?nrhs ?br ?bc b
|
gemm [Lacaml__C] |
gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b
performs the operation
c := alpha * op(a ) * op(b ) + beta * c
where op(x ) = x or x áµ€ depending on transx .
|
gemm [Lacaml__Z] |
gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b
performs the operation
c := alpha * op(a ) * op(b ) + beta * c
where op(x ) = x or x áµ€ depending on transx .
|
gemm [Lacaml__S] |
gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b
performs the operation
c := alpha * op(a ) * op(b ) + beta * c
where op(x ) = x or x áµ€ depending on transx .
|
gemm [Lacaml__D] |
gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b
performs the operation
c := alpha * op(a ) * op(b ) + beta * c
where op(x ) = x or x áµ€ depending on transx .
|
gemm_diag [Lacaml__C.Mat] |
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b
computes the diagonal of the product of the (sub-)matrices a
and b (taking into account potential transposing), multiplying
it with alpha and adding beta times y , storing the result in
y starting at the specified offset.
|
gemm_diag [Lacaml__Z.Mat] |
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b
computes the diagonal of the product of the (sub-)matrices a
and b (taking into account potential transposing), multiplying
it with alpha and adding beta times y , storing the result in
y starting at the specified offset.
|
gemm_diag [Lacaml__S.Mat] |
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b
computes the diagonal of the product of the (sub-)matrices a
and b (taking into account potential transposing), multiplying
it with alpha and adding beta times y , storing the result in
y starting at the specified offset.
|
gemm_diag [Lacaml__D.Mat] |
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b
computes the diagonal of the product of the (sub-)matrices a
and b (taking into account potential transposing), multiplying
it with alpha and adding beta times y , storing the result in
y starting at the specified offset.
|
gemm_get_params [Lacaml__utils] |
|
gemm_trace [Lacaml__C.Mat] |
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes
the trace of the product of the (sub-)matrices a and b (taking
into account potential transposing).
|
gemm_trace [Lacaml__Z.Mat] |
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes
the trace of the product of the (sub-)matrices a and b (taking
into account potential transposing).
|
gemm_trace [Lacaml__S.Mat] |
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes
the trace of the product of the (sub-)matrices a and b (taking
into account potential transposing).
|
gemm_trace [Lacaml__D.Mat] |
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes
the trace of the product of the (sub-)matrices a and b (taking
into account potential transposing).
|
gemv [Lacaml__C] |
gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x
performs the operation
y := alpha * op(a ) * x + beta * y
where op(a ) = a or a áµ€ according to the value of trans .
|
gemv [Lacaml__Z] |
gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x
performs the operation
y := alpha * op(a ) * x + beta * y
where op(a ) = a or a áµ€ according to the value of trans .
|
gemv [Lacaml__S] |
gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x
performs the operation
y := alpha * op(a ) * x + beta * y
where op(a ) = a or a áµ€ according to the value of trans .
|
gemv [Lacaml__D] |
gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x
performs the operation
y := alpha * op(a ) * x + beta * y
where op(a ) = a or a áµ€ according to the value of trans .
|
geqrf [Lacaml__C] |
geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of
a real m -by-n matrix a .
|
geqrf [Lacaml__Z] |
geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of
a real m -by-n matrix a .
|
geqrf [Lacaml__S] |
geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of
a real m -by-n matrix a .
|
geqrf [Lacaml__D] |
geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of
a real m -by-n matrix a .
|
geqrf_err [Lacaml__utils] |
|
geqrf_min_lwork [Lacaml__C] |
|
geqrf_min_lwork [Lacaml__Z] |
|
geqrf_min_lwork [Lacaml__S] |
|
geqrf_min_lwork [Lacaml__D] |
|
geqrf_opt_lwork [Lacaml__C] |
geqrf_opt_lwork ?m ?n ?ar ?ac a
|
geqrf_opt_lwork [Lacaml__Z] |
geqrf_opt_lwork ?m ?n ?ar ?ac a
|
geqrf_opt_lwork [Lacaml__S] |
geqrf_opt_lwork ?m ?n ?ar ?ac a
|
geqrf_opt_lwork [Lacaml__D] |
geqrf_opt_lwork ?m ?n ?ar ?ac a
|
ger [Lacaml__S] |
ger ?m ?n ?alpha ?ofsx ?incx x ?ofsy ?incy y n ?ar ?ac a see
BLAS documentation!
|
ger [Lacaml__D] |
ger ?m ?n ?alpha ?ofsx ?incx x ?ofsy ?incy y n ?ar ?ac a see
BLAS documentation!
|
gesdd [Lacaml__S] |
|
gesdd [Lacaml__D] |
|
gesdd_err [Lacaml__utils] |
|
gesdd_get_params [Lacaml__utils] |
|
gesdd_liwork [Lacaml__S] |
|
gesdd_liwork [Lacaml__D] |
|
gesdd_min_lwork [Lacaml__S] |
gesdd_min_lwork ?jobz ~m ~n
|
gesdd_min_lwork [Lacaml__D] |
gesdd_min_lwork ?jobz ~m ~n
|
gesdd_opt_lwork [Lacaml__S] |
|
gesdd_opt_lwork [Lacaml__D] |
|
gesv [Lacaml__C] |
gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to
a real system of linear equations a * X = b , where a is an
n -by-n matrix and X and b are n -by-nrhs matrices.
|
gesv [Lacaml__Z] |
gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to
a real system of linear equations a * X = b , where a is an
n -by-n matrix and X and b are n -by-nrhs matrices.
|
gesv [Lacaml__S] |
gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to
a real system of linear equations a * X = b , where a is an
n -by-n matrix and X and b are n -by-nrhs matrices.
|
gesv [Lacaml__D] |
gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to
a real system of linear equations a * X = b , where a is an
n -by-n matrix and X and b are n -by-nrhs matrices.
|
gesvd [Lacaml__C] |
|
gesvd [Lacaml__Z] |
|
gesvd [Lacaml__S] |
|
gesvd [Lacaml__D] |
|
gesvd_err [Lacaml__utils] |
|
gesvd_get_params [Lacaml__utils] |
|
gesvd_lrwork [Lacaml__C] |
|
gesvd_lrwork [Lacaml__Z] |
|
gesvd_min_lwork [Lacaml__C] |
|
gesvd_min_lwork [Lacaml__Z] |
|
gesvd_min_lwork [Lacaml__S] |
|
gesvd_min_lwork [Lacaml__D] |
|
gesvd_opt_lwork [Lacaml__C] |
|
gesvd_opt_lwork [Lacaml__Z] |
|
gesvd_opt_lwork [Lacaml__S] |
|
gesvd_opt_lwork [Lacaml__D] |
|
get_c [Lacaml__utils] |
|
get_cols_mat_tr [Lacaml__utils] |
|
get_diag_char [Lacaml__utils] |
|
get_dim1_mat [Lacaml__utils] |
|
get_dim2_mat [Lacaml__utils] |
|
get_dim_mat_packed [Lacaml__utils] |
|
get_dim_vec [Lacaml__utils] |
get_dim_vec loc vec_name ofs inc vec n_name n if the dimension n
is given, check that the vector vec is big enough, otherwise return
the maximal n for the given vector vec .
|
get_inner_dim [Lacaml__utils] |
|
get_job_char [Lacaml__utils] |
|
get_k_mat_sb [Lacaml__utils] |
|
get_mat [Lacaml__utils] |
|
get_mat_cols [Lacaml__utils] |
get_mat_cols ~loc ~mat_name ~dim2 ~c ~param_name p checks or infers
the matrix column operation length in the option parameter p with
name param_name at location loc for matrix with name mat_name
and dimension dim2 given the column operation offset c .
|
get_mat_dim1 [Lacaml__utils] |
get_mat_dim1 ~loc ~mat_name ~dim1 ~r ~m ~m_name checks or infers the
matrix row operation length in the option parameter m with name m_name
at location loc for matrix with name mat_name and dimension dim1
given the row operation offset r .
|
get_mat_dim2 [Lacaml__utils] |
get_mat_dim2 ~loc ~mat_name ~dim2 ~c ~n ~n_name checks or infers the
matrix column operation length in the option parameter n with name
n_name at location loc for matrix with name mat_name and dimension
dim2 given the column operation offset c .
|
get_mat_m [Lacaml__utils] |
get_mat_m ~loc ~mat_name ~dim1 ~r ~m checks or infers the matrix row
operation length in the option parameter m at location loc for matrix
with name mat_name and dimension dim1 given the row operation offset
r .
|
get_mat_min_dim1 [Lacaml__utils] |
get_mat_min_dim1 ~loc ~mat_name ~r ~m
|
get_mat_min_dim2 [Lacaml__utils] |
get_mat_min_dim2 ~loc ~mat_name ~c ~n
|
get_mat_n [Lacaml__utils] |
get_mat_n ~loc ~mat_name ~dim2 ~c ~n checks or infers the matrix column
operation length in the option parameter n at location loc for matrix
with name mat_name and dimension dim2 given the column operation
offset c .
|
get_mat_rows [Lacaml__utils] |
get_mat_rows ~loc ~mat_name ~dim1 ~r p ~param_name checks or infers
the matrix row operation length in the option parameter p with
name param_name at location loc for matrix with name mat_name
and dimension dim1 given the row operation offset r .
|
get_n_of_a [Lacaml__utils] |
|
get_n_of_square [Lacaml__utils] |
|
get_norm_char [Lacaml__utils] |
|
get_nrhs_of_b [Lacaml__utils] |
|
get_rows_mat_tr [Lacaml__utils] |
|
get_s_d_job_char [Lacaml__utils] |
|
get_side_char [Lacaml__utils] |
|
get_trans_char [Lacaml__utils] |
|
get_unpacked_dim [Lacaml__utils] |
|
get_uplo_char [Lacaml__utils] |
|
get_vec [Lacaml__utils] |
|
get_vec_geom [Lacaml__utils] |
|
get_vec_inc [Lacaml__utils] |
|
get_vec_min_dim [Lacaml__utils] |
get_vec_min_dim ~loc ~vec_name ~ofs ~inc ~n
|
get_vec_n [Lacaml__utils] |
get_vec_n ~loc ~vec_name ~dim ~ofs ~inc ~n_name n checks or infers
the vector operation length in the option parameter n with name n_name
at location loc for vector with name vec_name and dimension dim given
the operation offset ofs and increment inc .
|
get_vec_ofs [Lacaml__utils] |
|
get_vec_start_stop [Lacaml__utils] |
get_vec_start_stop ~ofsx ~incx ~n
|
get_work [Lacaml__utils] |
|
getrf [Lacaml__C] |
getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a
general m -by-n matrix a using partial pivoting with row
interchanges.
|
getrf [Lacaml__Z] |
getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a
general m -by-n matrix a using partial pivoting with row
interchanges.
|
getrf [Lacaml__S] |
getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a
general m -by-n matrix a using partial pivoting with row
interchanges.
|
getrf [Lacaml__D] |
getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a
general m -by-n matrix a using partial pivoting with row
interchanges.
|
getrf_err [Lacaml__utils] |
|
getrf_get_ipiv [Lacaml__utils] |
|
getrf_lu_err [Lacaml__utils] |
|
getri [Lacaml__C] |
getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix
using the LU factorization computed by Lacaml__C.getrf .
|
getri [Lacaml__Z] |
getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix
using the LU factorization computed by Lacaml__Z.getrf .
|
getri [Lacaml__S] |
getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix
using the LU factorization computed by Lacaml__S.getrf .
|
getri [Lacaml__D] |
getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix
using the LU factorization computed by Lacaml__D.getrf .
|
getri_err [Lacaml__utils] |
|
getri_min_lwork [Lacaml__C] |
|
getri_min_lwork [Lacaml__Z] |
|
getri_min_lwork [Lacaml__S] |
|
getri_min_lwork [Lacaml__D] |
|
getri_opt_lwork [Lacaml__C] |
getri_opt_lwork ?n ?ar ?ac a
|
getri_opt_lwork [Lacaml__Z] |
getri_opt_lwork ?n ?ar ?ac a
|
getri_opt_lwork [Lacaml__S] |
getri_opt_lwork ?n ?ar ?ac a
|
getri_opt_lwork [Lacaml__D] |
getri_opt_lwork ?n ?ar ?ac a
|
getrs [Lacaml__C] |
getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system
of linear equations a * X = b or a ' * X = b with a general
n -by-n matrix a using the LU factorization computed by
Lacaml__C.getrf .
|
getrs [Lacaml__Z] |
getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system
of linear equations a * X = b or a ' * X = b with a general
n -by-n matrix a using the LU factorization computed by
Lacaml__Z.getrf .
|
getrs [Lacaml__S] |
getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system
of linear equations a * X = b or a ' * X = b with a general
n -by-n matrix a using the LU factorization computed by
Lacaml__S.getrf .
|
getrs [Lacaml__D] |
getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system
of linear equations a * X = b or a ' * X = b with a general
n -by-n matrix a using the LU factorization computed by
Lacaml__D.getrf .
|
gtsv [Lacaml__C] |
gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the
equation a * X = b where a is an n -by-n tridiagonal
matrix, by Gaussian elimination with partial pivoting.
|
gtsv [Lacaml__Z] |
gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the
equation a * X = b where a is an n -by-n tridiagonal
matrix, by Gaussian elimination with partial pivoting.
|
gtsv [Lacaml__S] |
gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the
equation a * X = b where a is an n -by-n tridiagonal
matrix, by Gaussian elimination with partial pivoting.
|
gtsv [Lacaml__D] |
gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the
equation a * X = b where a is an n -by-n tridiagonal
matrix, by Gaussian elimination with partial pivoting.
|
H |
hankel [Lacaml__S.Mat] |
|
hankel [Lacaml__D.Mat] |
|
has_zero_dim [Lacaml__C.Mat] |
has_zero_dim mat checks whether matrix mat has a dimension of size
zero .
|
has_zero_dim [Lacaml__C.Vec] |
has_zero_dim vec checks whether vector vec has a dimension of size
zero .
|
has_zero_dim [Lacaml__Z.Mat] |
has_zero_dim mat checks whether matrix mat has a dimension of size
zero .
|
has_zero_dim [Lacaml__Z.Vec] |
has_zero_dim vec checks whether vector vec has a dimension of size
zero .
|
has_zero_dim [Lacaml__S.Mat] |
has_zero_dim mat checks whether matrix mat has a dimension of size
zero .
|
has_zero_dim [Lacaml__S.Vec] |
has_zero_dim vec checks whether vector vec has a dimension of size
zero .
|
has_zero_dim [Lacaml__D.Mat] |
has_zero_dim mat checks whether matrix mat has a dimension of size
zero .
|
has_zero_dim [Lacaml__D.Vec] |
has_zero_dim vec checks whether vector vec has a dimension of size
zero .
|
hilbert [Lacaml__S.Mat] |
|
hilbert [Lacaml__D.Mat] |
|
horizontal_default [Lacaml__io.Context] |
|
hypot [Lacaml__S.Mat] |
hypot ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes sqrt(a*a + b*b)
for the m by n sub-matrix of the matrix a starting in row ar
and column ac with the corresponding sub-matrix of the matrix b
starting in row br and column bc .
|
hypot [Lacaml__S.Vec] |
hypot ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes
sqrt(x*x + y*y) of n elements of vectors x and y elementwise,
using incx and incy as incremental steps respectively.
|
hypot [Lacaml__D.Mat] |
hypot ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes sqrt(a*a + b*b)
for the m by n sub-matrix of the matrix a starting in row ar
and column ac with the corresponding sub-matrix of the matrix b
starting in row br and column bc .
|
hypot [Lacaml__D.Vec] |
hypot ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes
sqrt(x*x + y*y) of n elements of vectors x and y elementwise,
using incx and incy as incremental steps respectively.
|
I |
iamax [Lacaml__C] |
iamax ?n ?ofsx ?incx x see BLAS documentation!
|
iamax [Lacaml__Z] |
iamax ?n ?ofsx ?incx x see BLAS documentation!
|
iamax [Lacaml__S] |
iamax ?n ?ofsx ?incx x see BLAS documentation!
|
iamax [Lacaml__D] |
iamax ?n ?ofsx ?incx x see BLAS documentation!
|
identity [Lacaml__C.Mat] |
|
identity [Lacaml__Z.Mat] |
|
identity [Lacaml__S.Mat] |
|
identity [Lacaml__D.Mat] |
|
ilaenv [Lacaml__utils] |
|
init [Lacaml__C.Vec] |
|
init [Lacaml__Z.Vec] |
|
init [Lacaml__S.Vec] |
|
init [Lacaml__D.Vec] |
|
init_cols [Lacaml__C.Mat] |
|
init_cols [Lacaml__Z.Mat] |
|
init_cols [Lacaml__S.Mat] |
|
init_cols [Lacaml__D.Mat] |
|
init_rows [Lacaml__C.Mat] |
|
init_rows [Lacaml__Z.Mat] |
|
init_rows [Lacaml__S.Mat] |
|
init_rows [Lacaml__D.Mat] |
|
ipiv_str [Lacaml__utils] |
|
iseed_str [Lacaml__utils] |
|
iter [Lacaml__C.Vec] |
iter ?n ?ofsx ?incx f x applies function f in turn to all elements
of vector x .
|
iter [Lacaml__Z.Vec] |
iter ?n ?ofsx ?incx f x applies function f in turn to all elements
of vector x .
|
iter [Lacaml__S.Vec] |
iter ?n ?ofsx ?incx f x applies function f in turn to all elements
of vector x .
|
iter [Lacaml__D.Vec] |
iter ?n ?ofsx ?incx f x applies function f in turn to all elements
of vector x .
|
iteri [Lacaml__C.Vec] |
iteri ?n ?ofsx ?incx f x same as iter but additionally passes
the index of the element as first argument and the element itself
as second argument.
|
iteri [Lacaml__Z.Vec] |
iteri ?n ?ofsx ?incx f x same as iter but additionally passes
the index of the element as first argument and the element itself
as second argument.
|
iteri [Lacaml__S.Vec] |
iteri ?n ?ofsx ?incx f x same as iter but additionally passes
the index of the element as first argument and the element itself
as second argument.
|
iteri [Lacaml__D.Vec] |
iteri ?n ?ofsx ?incx f x same as iter but additionally passes
the index of the element as first argument and the element itself
as second argument.
|
J |
job_char_false [Lacaml__utils] |
|
job_char_true [Lacaml__utils] |
|
K |
k1_str [Lacaml__utils] |
|
k2_str [Lacaml__utils] |
|
k_str [Lacaml__utils] |
|
ka_str [Lacaml__utils] |
|
kb_str [Lacaml__utils] |
|
kd_str [Lacaml__utils] |
|
kl_str [Lacaml__utils] |
|
ku_str [Lacaml__utils] |
|
L |
lacpy [Lacaml__C] |
lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy the (triangular)
(sub-)matrix a (to an optional (sub-)matrix b ) and return it.
|
lacpy [Lacaml__Z] |
lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy the (triangular)
(sub-)matrix a (to an optional (sub-)matrix b ) and return it.
|
lacpy [Lacaml__S] |
lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy the (triangular)
(sub-)matrix a (to an optional (sub-)matrix b ) and return it.
|
lacpy [Lacaml__D] |
lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy the (triangular)
(sub-)matrix a (to an optional (sub-)matrix b ) and return it.
|
lamch [Lacaml__S] |
lamch cmach see LAPACK documentation!
|
lamch [Lacaml__D] |
lamch cmach see LAPACK documentation!
|
lange [Lacaml__C] |
lange ?m ?n ?norm ?work ?ar ?ac a
|
lange [Lacaml__Z] |
lange ?m ?n ?norm ?work ?ar ?ac a
|
lange [Lacaml__S] |
lange ?m ?n ?norm ?work ?ar ?ac a
|
lange [Lacaml__D] |
lange ?m ?n ?norm ?work ?ar ?ac a
|
lange_min_lwork [Lacaml__C] |
|
lange_min_lwork [Lacaml__Z] |
|
lange_min_lwork [Lacaml__S] |
|
lange_min_lwork [Lacaml__D] |
|
lansy [Lacaml__C] |
lansy ?n ?up ?norm ?work ?ar ?ac a see LAPACK documentation!
|
lansy [Lacaml__Z] |
lansy ?n ?up ?norm ?work ?ar ?ac a see LAPACK documentation!
|
lansy [Lacaml__S] |
lansy ?norm ?up ?n ?ar ?ac ?work a see LAPACK documentation!
|
lansy [Lacaml__D] |
lansy ?norm ?up ?n ?ar ?ac ?work a see LAPACK documentation!
|
lansy_min_lwork [Lacaml__C] |
|
lansy_min_lwork [Lacaml__Z] |
|
lansy_min_lwork [Lacaml__S] |
|
lansy_min_lwork [Lacaml__D] |
|
lapmt [Lacaml__C] |
lapmt ?forward ?n ?m ?ar ?ac a k swap columns of a
according to the permutations in k .
|
lapmt [Lacaml__Z] |
lapmt ?forward ?n ?m ?ar ?ac a k swap columns of a
according to the permutations in k .
|
lapmt [Lacaml__S] |
lapmt ?forward ?n ?m ?ar ?ac a k swap columns of a
according to the permutations in k .
|
lapmt [Lacaml__D] |
lapmt ?forward ?n ?m ?ar ?ac a k swap columns of a
according to the permutations in k .
|
larnv [Lacaml__C] |
larnv ?idist ?iseed ?n ?ofsx ?x ()
|
larnv [Lacaml__Z] |
larnv ?idist ?iseed ?n ?ofsx ?x ()
|
larnv [Lacaml__S] |
larnv ?idist ?iseed ?n ?ofsx ?x ()
|
larnv [Lacaml__D] |
larnv ?idist ?iseed ?n ?ofsx ?x ()
|
lassq [Lacaml__C] |
lassq ?n ?ofsx ?incx ?scale ?sumsq
|
lassq [Lacaml__Z] |
lassq ?n ?ofsx ?incx ?scale ?sumsq
|
lassq [Lacaml__S] |
lassq ?n ?ofsx ?incx ?scale ?sumsq
|
lassq [Lacaml__D] |
lassq ?n ?ofsx ?incx ?scale ?sumsq
|
laswp [Lacaml__C] |
laswp ?n ?ar ?ac a ?k1 ?k2 ?incx ipiv swap rows of a according to
ipiv .
|
laswp [Lacaml__Z] |
laswp ?n ?ar ?ac a ?k1 ?k2 ?incx ipiv swap rows of a according to
ipiv .
|
laswp [Lacaml__S] |
laswp ?n ?ar ?ac a ?k1 ?k2 ?incx ipiv swap rows of a according to
ipiv .
|
laswp [Lacaml__D] |
laswp ?n ?ar ?ac a ?k1 ?k2 ?incx ipiv swap rows of a according to
ipiv .
|
lauum [Lacaml__C] |
lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L,
where the triangular factor U or L is stored in the upper or lower
triangular part of the array a .
|
lauum [Lacaml__Z] |
lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L,
where the triangular factor U or L is stored in the upper or lower
triangular part of the array a .
|
lauum [Lacaml__S] |
lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L,
where the triangular factor U or L is stored in the upper or lower
triangular part of the array a .
|
lauum [Lacaml__D] |
lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L,
where the triangular factor U or L is stored in the upper or lower
triangular part of the array a .
|
linspace [Lacaml__C.Vec] |
|
linspace [Lacaml__Z.Vec] |
|
linspace [Lacaml__S.Vec] |
|
linspace [Lacaml__D.Vec] |
|
liwork_str [Lacaml__utils] |
|
log [Lacaml__S.Mat] |
log ?m ?n ?br ?bc ?b ?ar ?ac a computes the logarithm of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
log [Lacaml__S.Vec] |
log ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logarithm
of n elements of the vector x using incx as incremental
steps.
|
log [Lacaml__D.Mat] |
log ?m ?n ?br ?bc ?b ?ar ?ac a computes the logarithm of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
log [Lacaml__D.Vec] |
log ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logarithm
of n elements of the vector x using incx as incremental
steps.
|
log10 [Lacaml__S.Mat] |
log10 ?m ?n ?br ?bc ?b ?ar ?ac a computes the base-10 logarithm of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
log10 [Lacaml__S.Vec] |
log10 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-10 logarithm
of n elements of the vector x using incx as incremental steps.
|
log10 [Lacaml__D.Mat] |
log10 ?m ?n ?br ?bc ?b ?ar ?ac a computes the base-10 logarithm of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
log10 [Lacaml__D.Vec] |
log10 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-10 logarithm
of n elements of the vector x using incx as incremental steps.
|
log1p [Lacaml__S.Mat] |
log1p ?m ?n ?br ?bc ?b ?ar ?ac a computes log (1 + a) of the elements
in the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
log1p [Lacaml__S.Vec] |
log1p ?n ?ofsy ?incy ?y ?ofsx ?incx x computes log (1 + x) for n
elements of the vector x using incx as incremental steps.
|
log1p [Lacaml__D.Mat] |
log1p ?m ?n ?br ?bc ?b ?ar ?ac a computes log (1 + a) of the elements
in the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
log1p [Lacaml__D.Vec] |
log1p ?n ?ofsy ?incy ?y ?ofsx ?incx x computes log (1 + x) for n
elements of the vector x using incx as incremental steps.
|
log2 [Lacaml__S.Mat] |
log2 ?m ?n ?br ?bc ?b ?ar ?ac a computes base-2 logarithm of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
log2 [Lacaml__S.Vec] |
log2 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-2 logarithm
of n elements of the vector x using incx as incremental steps.
|
log2 [Lacaml__D.Mat] |
log2 ?m ?n ?br ?bc ?b ?ar ?ac a computes base-2 logarithm of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
log2 [Lacaml__D.Vec] |
log2 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-2 logarithm
of n elements of the vector x using incx as incremental steps.
|
log_sum_exp [Lacaml__S.Mat] |
log_sum_exp ?m ?n ?ar ?ac a computes the logarithm of the sum of
exponentials of all elements in the m -by-n submatrix starting at row
ar and column ac .
|
log_sum_exp [Lacaml__S.Vec] |
log_sum_exp ?n ?ofsx ?incx x computes the logarithm of the sum of
exponentials of the n elements in vector x , separated by incx
incremental steps.
|
log_sum_exp [Lacaml__D.Mat] |
log_sum_exp ?m ?n ?ar ?ac a computes the logarithm of the sum of
exponentials of all elements in the m -by-n submatrix starting at row
ar and column ac .
|
log_sum_exp [Lacaml__D.Vec] |
log_sum_exp ?n ?ofsx ?incx x computes the logarithm of the sum of
exponentials of the n elements in vector x , separated by incx
incremental steps.
|
logistic [Lacaml__S.Mat] |
logistic ?m ?n ?br ?bc ?b ?ar ?ac a computes the logistic function
1/(1 + exp(-a) of the elements in the m by n sub-matrix of the
matrix a starting in row ar and column ac .
|
logistic [Lacaml__S.Vec] |
logistic ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logistict
function 1/(1 + exp(-a) for n elements of the vector x using incx
as incremental steps.
|
logistic [Lacaml__D.Mat] |
logistic ?m ?n ?br ?bc ?b ?ar ?ac a computes the logistic function
1/(1 + exp(-a) of the elements in the m by n sub-matrix of the
matrix a starting in row ar and column ac .
|
logistic [Lacaml__D.Vec] |
logistic ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logistict
function 1/(1 + exp(-a) for n elements of the vector x using incx
as incremental steps.
|
logspace [Lacaml__C.Vec] |
|
logspace [Lacaml__Z.Vec] |
|
logspace [Lacaml__S.Vec] |
|
logspace [Lacaml__D.Vec] |
|
lsc [Lacaml__io.Toplevel] |
|
lwork_str [Lacaml__utils] |
|
M |
m_str [Lacaml__utils] |
|
make [Lacaml__C.Mat] |
|
make [Lacaml__C.Vec] |
|
make [Lacaml__Z.Mat] |
|
make [Lacaml__Z.Vec] |
|
make [Lacaml__S.Mat] |
|
make [Lacaml__S.Vec] |
|
make [Lacaml__D.Mat] |
|
make [Lacaml__D.Vec] |
|
make0 [Lacaml__C.Mat] |
|
make0 [Lacaml__C.Vec] |
|
make0 [Lacaml__Z.Mat] |
|
make0 [Lacaml__Z.Vec] |
|
make0 [Lacaml__S.Mat] |
|
make0 [Lacaml__S.Vec] |
|
make0 [Lacaml__D.Mat] |
|
make0 [Lacaml__D.Vec] |
|
make_mvec [Lacaml__C.Mat] |
|
make_mvec [Lacaml__Z.Mat] |
|
make_mvec [Lacaml__S.Mat] |
|
make_mvec [Lacaml__D.Mat] |
|
map [Lacaml__C.Mat] |
map f ?m ?n ?br ?bc ?b ?ar ?ac a
|
map [Lacaml__C.Vec] |
|
map [Lacaml__Z.Mat] |
map f ?m ?n ?br ?bc ?b ?ar ?ac a
|
map [Lacaml__Z.Vec] |
|
map [Lacaml__S.Mat] |
map f ?m ?n ?br ?bc ?b ?ar ?ac a
|
map [Lacaml__S.Vec] |
|
map [Lacaml__D.Mat] |
map f ?m ?n ?br ?bc ?b ?ar ?ac a
|
map [Lacaml__D.Vec] |
|
mat_from_vec [Lacaml__common] |
mat_from_vec a converts the vector a into a matrix with Array1.dim a
rows and 1 column.
|
max [Lacaml__C.Vec] |
max ?n ?ofsx ?incx x computes the greater of the n elements
in vector x (2-norm), separated by incx incremental steps.
|
max [Lacaml__Z.Vec] |
max ?n ?ofsx ?incx x computes the greater of the n elements
in vector x (2-norm), separated by incx incremental steps.
|
max [Lacaml__S.Vec] |
max ?n ?ofsx ?incx x computes the greater of the n elements
in vector x (2-norm), separated by incx incremental steps.
|
max [Lacaml__D.Vec] |
max ?n ?ofsx ?incx x computes the greater of the n elements
in vector x (2-norm), separated by incx incremental steps.
|
max2 [Lacaml__S.Mat] |
max2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the elementwise
maximum of the m by n sub-matrix of the matrix a starting in row
ar and column ac with the corresponding sub-matrix of the matrix
b starting in row br and column bc .
|
max2 [Lacaml__S.Vec] |
max2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes the
maximum of n elements of vectors x and y elementwise, using incx
and incy as incremental steps respectively.
|
max2 [Lacaml__D.Mat] |
max2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the elementwise
maximum of the m by n sub-matrix of the matrix a starting in row
ar and column ac with the corresponding sub-matrix of the matrix
b starting in row br and column bc .
|
max2 [Lacaml__D.Vec] |
max2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes the
maximum of n elements of vectors x and y elementwise, using incx
and incy as incremental steps respectively.
|
min [Lacaml__C.Vec] |
min ?n ?ofsx ?incx x computes the smaller of the n elements
in vector x (2-norm), separated by incx incremental steps.
|
min [Lacaml__Z.Vec] |
min ?n ?ofsx ?incx x computes the smaller of the n elements
in vector x (2-norm), separated by incx incremental steps.
|
min [Lacaml__S.Vec] |
min ?n ?ofsx ?incx x computes the smaller of the n elements
in vector x (2-norm), separated by incx incremental steps.
|
min [Lacaml__D.Vec] |
min ?n ?ofsx ?incx x computes the smaller of the n elements
in vector x (2-norm), separated by incx incremental steps.
|
min2 [Lacaml__S.Mat] |
min2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the elementwise
minimum of the m by n sub-matrix of the matrix a starting in row
ar and column ac with the corresponding sub-matrix of the matrix
b starting in row br and column bc .
|
min2 [Lacaml__S.Vec] |
min2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes the
minimum of n elements of vectors x and y elementwise, using incx
and incy as incremental steps respectively.
|
min2 [Lacaml__D.Mat] |
min2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the elementwise
minimum of the m by n sub-matrix of the matrix a starting in row
ar and column ac with the corresponding sub-matrix of the matrix
b starting in row br and column bc .
|
min2 [Lacaml__D.Vec] |
min2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes the
minimum of n elements of vectors x and y elementwise, using incx
and incy as incremental steps respectively.
|
mul [Lacaml__C.Mat] |
mul ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the element-wise
product of the m by n sub-matrix of the matrix a starting in row
ar and column ac with the corresponding sub-matrix of the matrix
b starting in row br and column bc .
|
mul [Lacaml__C.Vec] |
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies
n elements of vectors x and y elementwise, using incx
and incy as incremental steps respectively.
|
mul [Lacaml__Z.Mat] |
mul ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the element-wise
product of the m by n sub-matrix of the matrix a starting in row
ar and column ac with the corresponding sub-matrix of the matrix
b starting in row br and column bc .
|
mul [Lacaml__Z.Vec] |
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies
n elements of vectors x and y elementwise, using incx
and incy as incremental steps respectively.
|
mul [Lacaml__S.Mat] |
mul ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the element-wise
product of the m by n sub-matrix of the matrix a starting in row
ar and column ac with the corresponding sub-matrix of the matrix
b starting in row br and column bc .
|
mul [Lacaml__S.Vec] |
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies
n elements of vectors x and y elementwise, using incx
and incy as incremental steps respectively.
|
mul [Lacaml__D.Mat] |
mul ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the element-wise
product of the m by n sub-matrix of the matrix a starting in row
ar and column ac with the corresponding sub-matrix of the matrix
b starting in row br and column bc .
|
mul [Lacaml__D.Vec] |
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies
n elements of vectors x and y elementwise, using incx
and incy as incremental steps respectively.
|
mvec_of_array [Lacaml__C.Mat] |
|
mvec_of_array [Lacaml__Z.Mat] |
|
mvec_of_array [Lacaml__S.Mat] |
|
mvec_of_array [Lacaml__D.Mat] |
|
mvec_to_array [Lacaml__C.Mat] |
|
mvec_to_array [Lacaml__Z.Mat] |
|
mvec_to_array [Lacaml__S.Mat] |
|
mvec_to_array [Lacaml__D.Mat] |
|
N |
n_str [Lacaml__utils] |
|
neg [Lacaml__C.Mat] |
neg ?m ?n ?br ?bc ?b ?ar ?ac a computes the negative of the elements in
the m by n (sub-)matrix of the matrix a starting in row ar
and column ac .
|
neg [Lacaml__C.Vec] |
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the
vector x using incx as incremental steps.
|
neg [Lacaml__Z.Mat] |
neg ?m ?n ?br ?bc ?b ?ar ?ac a computes the negative of the elements in
the m by n (sub-)matrix of the matrix a starting in row ar
and column ac .
|
neg [Lacaml__Z.Vec] |
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the
vector x using incx as incremental steps.
|
neg [Lacaml__S.Mat] |
neg ?m ?n ?br ?bc ?b ?ar ?ac a computes the negative of the elements in
the m by n (sub-)matrix of the matrix a starting in row ar
and column ac .
|
neg [Lacaml__S.Vec] |
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the
vector x using incx as incremental steps.
|
neg [Lacaml__D.Mat] |
neg ?m ?n ?br ?bc ?b ?ar ?ac a computes the negative of the elements in
the m by n (sub-)matrix of the matrix a starting in row ar
and column ac .
|
neg [Lacaml__D.Vec] |
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the
vector x using incx as incremental steps.
|
nrhs_str [Lacaml__utils] |
|
nrm2 [Lacaml__C] |
nrm2 ?n ?ofsx ?incx x see BLAS documentation!
|
nrm2 [Lacaml__Z] |
nrm2 ?n ?ofsx ?incx x see BLAS documentation!
|
nrm2 [Lacaml__S] |
nrm2 ?n ?ofsx ?incx x see BLAS documentation!
|
nrm2 [Lacaml__D] |
nrm2 ?n ?ofsx ?incx x see BLAS documentation!
|
O |
of_array [Lacaml__C.Mat] |
|
of_array [Lacaml__C.Vec] |
|
of_array [Lacaml__Z.Mat] |
|
of_array [Lacaml__Z.Vec] |
|
of_array [Lacaml__S.Mat] |
|
of_array [Lacaml__S.Vec] |
|
of_array [Lacaml__D.Mat] |
|
of_array [Lacaml__D.Vec] |
|
of_col_vecs [Lacaml__C.Mat] |
|
of_col_vecs [Lacaml__Z.Mat] |
|
of_col_vecs [Lacaml__S.Mat] |
|
of_col_vecs [Lacaml__D.Mat] |
|
of_col_vecs_list [Lacaml__C.Mat] |
|
of_col_vecs_list [Lacaml__Z.Mat] |
|
of_col_vecs_list [Lacaml__S.Mat] |
|
of_col_vecs_list [Lacaml__D.Mat] |
|
of_diag [Lacaml__C.Mat] |
of_diag ?n ?br ?bc ?b ?ofsx ?incx x
|
of_diag [Lacaml__Z.Mat] |
of_diag ?n ?br ?bc ?b ?ofsx ?incx x
|
of_diag [Lacaml__S.Mat] |
of_diag ?n ?br ?bc ?b ?ofsx ?incx x
|
of_diag [Lacaml__D.Mat] |
of_diag ?n ?br ?bc ?b ?ofsx ?incx x
|
of_list [Lacaml__C.Mat] |
|
of_list [Lacaml__C.Vec] |
|
of_list [Lacaml__Z.Mat] |
|
of_list [Lacaml__Z.Vec] |
|
of_list [Lacaml__S.Mat] |
|
of_list [Lacaml__S.Vec] |
|
of_list [Lacaml__D.Mat] |
|
of_list [Lacaml__D.Vec] |
|
ofs_str [Lacaml__utils] |
|
orgqr [Lacaml__S] |
orgqr ?m ?n ?k ?work ~tau ?ar ?ac a see LAPACK documentation!
|
orgqr [Lacaml__D] |
orgqr ?m ?n ?k ?work ~tau ?ar ?ac a see LAPACK documentation!
|
orgqr_err [Lacaml__utils] |
|
orgqr_get_params [Lacaml__utils] |
|
orgqr_min_lwork [Lacaml__S] |
|
orgqr_min_lwork [Lacaml__D] |
|
orgqr_opt_lwork [Lacaml__S] |
orgqr_opt_lwork ?m ?n ?k ~tau ?ar ?ac a
|
orgqr_opt_lwork [Lacaml__D] |
orgqr_opt_lwork ?m ?n ?k ~tau ?ar ?ac a
|
ormqr [Lacaml__S] |
ormqr ?side ?trans ?m ?n ?k ?work ~tau ?ar ?ac a ?cr ?cc c
see LAPACK documentation!
|
ormqr [Lacaml__D] |
ormqr ?side ?trans ?m ?n ?k ?work ~tau ?ar ?ac a ?cr ?cc c
see LAPACK documentation!
|
ormqr_err [Lacaml__utils] |
|
ormqr_get_params [Lacaml__utils] |
|
ormqr_opt_lwork [Lacaml__S] |
ormqr_opt_lwork ?side ?trans ?m ?n ?k ~tau ?ar ?ac a ?cr ?cc c
|
ormqr_opt_lwork [Lacaml__D] |
ormqr_opt_lwork ?side ?trans ?m ?n ?k ~tau ?ar ?ac a ?cr ?cc c
|
P |
packed [Lacaml__C.Mat] |
|
packed [Lacaml__Z.Mat] |
|
packed [Lacaml__S.Mat] |
|
packed [Lacaml__D.Mat] |
|
pascal [Lacaml__S.Mat] |
|
pascal [Lacaml__D.Mat] |
|
pbsv [Lacaml__C] |
pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is an n -by-n symmetric positive definite band matrix and X
and b are n -by-nrhs matrices.
|
pbsv [Lacaml__Z] |
pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is an n -by-n symmetric positive definite band matrix and X
and b are n -by-nrhs matrices.
|
pbsv [Lacaml__S] |
pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is an n -by-n symmetric positive definite band matrix and X
and b are n -by-nrhs matrices.
|
pbsv [Lacaml__D] |
pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is an n -by-n symmetric positive definite band matrix and X
and b are n -by-nrhs matrices.
|
pocon [Lacaml__C] |
pocon ?n ?up ?anorm ?work ?rwork ?ar ?ac a
|
pocon [Lacaml__Z] |
pocon ?n ?up ?anorm ?work ?rwork ?ar ?ac a
|
pocon [Lacaml__S] |
pocon ?n ?up ?anorm ?work ?iwork ?ar ?ac a
|
pocon [Lacaml__D] |
pocon ?n ?up ?anorm ?work ?iwork ?ar ?ac a
|
pocon_min_liwork [Lacaml__S] |
|
pocon_min_liwork [Lacaml__D] |
|
pocon_min_lrwork [Lacaml__C] |
|
pocon_min_lrwork [Lacaml__Z] |
|
pocon_min_lwork [Lacaml__C] |
|
pocon_min_lwork [Lacaml__Z] |
|
pocon_min_lwork [Lacaml__S] |
|
pocon_min_lwork [Lacaml__D] |
|
posv [Lacaml__C] |
posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a
real system of linear equations a * X = b , where a is an
n -by-n symmetric positive definite matrix and X and b are
n -by-nrhs matrices.
|
posv [Lacaml__Z] |
posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a
real system of linear equations a * X = b , where a is an
n -by-n symmetric positive definite matrix and X and b are
n -by-nrhs matrices.
|
posv [Lacaml__S] |
posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a
real system of linear equations a * X = b , where a is an
n -by-n symmetric positive definite matrix and X and b are
n -by-nrhs matrices.
|
posv [Lacaml__D] |
posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a
real system of linear equations a * X = b , where a is an
n -by-n symmetric positive definite matrix and X and b are
n -by-nrhs matrices.
|
potrf [Lacaml__C] |
potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive
definite matrix a (or the designated submatrix) using Cholesky
factorization.
|
potrf [Lacaml__Z] |
potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive
definite matrix a (or the designated submatrix) using Cholesky
factorization.
|
potrf [Lacaml__S] |
potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive
definite matrix a (or the designated submatrix) using Cholesky
factorization.
|
potrf [Lacaml__D] |
potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive
definite matrix a (or the designated submatrix) using Cholesky
factorization.
|
potrf_chol_err [Lacaml__utils] |
|
potrf_err [Lacaml__utils] |
|
potri [Lacaml__C] |
potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse
of the real symmetric positive definite matrix a using the
Cholesky factorization a = U**T*U or a = L*L**T computed by
Lacaml__C.potrf .
|
potri [Lacaml__Z] |
potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse
of the real symmetric positive definite matrix a using the
Cholesky factorization a = U**T*U or a = L*L**T computed by
Lacaml__Z.potrf .
|
potri [Lacaml__S] |
potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse
of the real symmetric positive definite matrix a using the
Cholesky factorization a = U**T*U or a = L*L**T computed by
Lacaml__S.potrf .
|
potri [Lacaml__D] |
potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse
of the real symmetric positive definite matrix a using the
Cholesky factorization a = U**T*U or a = L*L**T computed by
Lacaml__D.potrf .
|
potrs [Lacaml__C] |
potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves
a system of linear equations a *X = b , where a is symmetric
positive definite matrix, using the Cholesky factorization a =
U**T*U or a = L*L**T computed by Lacaml__C.potrf .
|
potrs [Lacaml__Z] |
potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves
a system of linear equations a *X = b , where a is symmetric
positive definite matrix, using the Cholesky factorization a =
U**T*U or a = L*L**T computed by Lacaml__Z.potrf .
|
potrs [Lacaml__S] |
potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves
a system of linear equations a *X = b , where a is symmetric
positive definite matrix, using the Cholesky factorization a =
U**T*U or a = L*L**T computed by Lacaml__S.potrf .
|
potrs [Lacaml__D] |
potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves
a system of linear equations a *X = b , where a is symmetric
positive definite matrix, using the Cholesky factorization a =
U**T*U or a = L*L**T computed by Lacaml__D.potrf .
|
potrs_err [Lacaml__utils] |
|
pow [Lacaml__S.Mat] |
pow ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes pow(a, b) for the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
pow [Lacaml__S.Vec] |
pow ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes pow(a, b)
of n elements of vectors x and y elementwise, using incx and
incy as incremental steps respectively.
|
pow [Lacaml__D.Mat] |
pow ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes pow(a, b) for the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
pow [Lacaml__D.Vec] |
pow ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes pow(a, b)
of n elements of vectors x and y elementwise, using incx and
incy as incremental steps respectively.
|
pp_cmat [Lacaml__io.Toplevel] |
|
pp_cmat [Lacaml__io] |
|
pp_complex_el_default [Lacaml__io] |
fprintf ppf "(%G, %Gi)" el.re el.im
|
pp_cvec [Lacaml__io.Toplevel] |
|
pp_cvec [Lacaml__io] |
|
pp_float_el_default [Lacaml__io] |
|
pp_fmat [Lacaml__io.Toplevel] |
|
pp_fmat [Lacaml__io] |
|
pp_fvec [Lacaml__io.Toplevel] |
|
pp_fvec [Lacaml__io] |
|
pp_imat [Lacaml__io.Toplevel] |
|
pp_imat [Lacaml__io] |
|
pp_int32_el [Lacaml__io] |
|
pp_ivec [Lacaml__io.Toplevel] |
|
pp_ivec [Lacaml__io] |
|
pp_labeled_cmat [Lacaml__io] |
|
pp_labeled_cvec [Lacaml__io] |
|
pp_labeled_fmat [Lacaml__io] |
|
pp_labeled_fvec [Lacaml__io] |
|
pp_labeled_imat [Lacaml__io] |
|
pp_labeled_ivec [Lacaml__io] |
|
pp_labeled_rcvec [Lacaml__io] |
|
pp_labeled_rfvec [Lacaml__io] |
|
pp_labeled_rivec [Lacaml__io] |
|
pp_lcmat [Lacaml__io] |
|
pp_lcvec [Lacaml__io] |
|
pp_lfmat [Lacaml__io] |
|
pp_lfvec [Lacaml__io] |
|
pp_limat [Lacaml__io] |
|
pp_livec [Lacaml__io] |
|
pp_mat [Lacaml__C] |
Pretty-printer for matrices.
|
pp_mat [Lacaml__Z] |
Pretty-printer for matrices.
|
pp_mat [Lacaml__S] |
Pretty-printer for matrices.
|
pp_mat [Lacaml__D] |
Pretty-printer for matrices.
|
pp_mat_gen [Lacaml__io] |
pp_mat_gen
?pp_open ?pp_close ?pp_head ?pp_foot ?pp_end_row ?pp_end_col
?pp_left ?pp_right ?pad pp_el ppf mat
|
pp_num [Lacaml__C] |
pp_num ppf el is equivalent to fprintf ppf "(%G, %Gi)"
el.re el.im .
|
pp_num [Lacaml__Z] |
pp_num ppf el is equivalent to fprintf ppf "(%G, %Gi)"
el.re el.im .
|
pp_num [Lacaml__S] |
pp_num ppf el is equivalent to fprintf ppf "%G" el .
|
pp_num [Lacaml__D] |
pp_num ppf el is equivalent to fprintf ppf "%G" el .
|
pp_ocmat [Lacaml__io] |
|
pp_ocvec [Lacaml__io] |
|
pp_ofmat [Lacaml__io] |
|
pp_ofvec [Lacaml__io] |
|
pp_oimat [Lacaml__io] |
|
pp_oivec [Lacaml__io] |
|
pp_omat [Lacaml__io] |
pp_omat ppf pp_el mat prints matrix mat to formatter ppf
in OCaml-style using the element printer pp_el .
|
pp_ovec [Lacaml__io] |
pp_ovec ppf pp_el vec prints the column vector vec to formatter
ppf in OCaml-style using the element printer pp_el .
|
pp_rcvec [Lacaml__io.Toplevel] |
|
pp_rcvec [Lacaml__io] |
|
pp_rfvec [Lacaml__io.Toplevel] |
|
pp_rfvec [Lacaml__io] |
|
pp_rivec [Lacaml__io.Toplevel] |
|
pp_rivec [Lacaml__io] |
|
pp_rlcvec [Lacaml__io] |
|
pp_rlfvec [Lacaml__io] |
|
pp_rlivec [Lacaml__io] |
|
pp_rocvec [Lacaml__io] |
|
pp_rofvec [Lacaml__io] |
|
pp_roivec [Lacaml__io] |
|
pp_rovec [Lacaml__io] |
pp_rovec ppf pp_el vec prints the row vector vec to formatter
ppf in OCaml-style using the element printer pp_el .
|
pp_vec [Lacaml__C] |
Pretty-printer for column vectors.
|
pp_vec [Lacaml__Z] |
Pretty-printer for column vectors.
|
pp_vec [Lacaml__S] |
Pretty-printer for column vectors.
|
pp_vec [Lacaml__D] |
Pretty-printer for column vectors.
|
ppsv [Lacaml__C] |
ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to
the real system of linear equations a * X = b , where a is an
n -by-n symmetric positive definite matrix stored in packed
format and X and b are n -by-nrhs matrices.
|
ppsv [Lacaml__Z] |
ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to
the real system of linear equations a * X = b , where a is an
n -by-n symmetric positive definite matrix stored in packed
format and X and b are n -by-nrhs matrices.
|
ppsv [Lacaml__S] |
ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to
the real system of linear equations a * X = b , where a is an
n -by-n symmetric positive definite matrix stored in packed
format and X and b are n -by-nrhs matrices.
|
ppsv [Lacaml__D] |
ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to
the real system of linear equations a * X = b , where a is an
n -by-n symmetric positive definite matrix stored in packed
format and X and b are n -by-nrhs matrices.
|
prec [Lacaml__C] |
Precision for this submodule C .
|
prec [Lacaml__Z] |
Precision for this submodule Z .
|
prec [Lacaml__S] |
Precision for this submodule S .
|
prec [Lacaml__D] |
Precision for this submodule D .
|
prod [Lacaml__C.Vec] |
prod ?n ?ofsx ?incx x computes the product of the n elements
in vector x , separated by incx incremental steps.
|
prod [Lacaml__Z.Vec] |
prod ?n ?ofsx ?incx x computes the product of the n elements
in vector x , separated by incx incremental steps.
|
prod [Lacaml__S.Vec] |
prod ?n ?ofsx ?incx x computes the product of the n elements
in vector x , separated by incx incremental steps.
|
prod [Lacaml__D.Vec] |
prod ?n ?ofsx ?incx x computes the product of the n elements
in vector x , separated by incx incremental steps.
|
ptsv [Lacaml__C] |
ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to
the real system of linear equations a *X = b , where a is an
n -by-n symmetric positive definite tridiagonal matrix, and X
and b are n -by-nrhs matrices.
|
ptsv [Lacaml__Z] |
ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to
the real system of linear equations a *X = b , where a is an
n -by-n symmetric positive definite tridiagonal matrix, and X
and b are n -by-nrhs matrices.
|
ptsv [Lacaml__S] |
ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to
the real system of linear equations a *X = b , where a is an
n -by-n symmetric positive definite tridiagonal matrix, and X
and b are n -by-nrhs matrices.
|
ptsv [Lacaml__D] |
ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to
the real system of linear equations a *X = b , where a is an
n -by-n symmetric positive definite tridiagonal matrix, and X
and b are n -by-nrhs matrices.
|
R |
r_str [Lacaml__utils] |
|
raise_bad_mat_ofs [Lacaml__utils] |
raise_bad_mat_ofs ~loc ~name ~ofs_name ~ofs ~max_ofs
|
raise_mat_bad_c [Lacaml__utils] |
raise_mat_bad_c ~loc ~mat_name ~c ~max_c
|
raise_mat_bad_r [Lacaml__utils] |
raise_mat_bad_r ~loc ~mat_name ~r ~max_r
|
raise_max_len [Lacaml__utils] |
raise_max_len ~loc ~len_name ~len ~max_len
|
raise_var_lt0 [Lacaml__utils] |
raise_var_lt0 ~loc ~name var
|
raise_vec_bad_ofs [Lacaml__utils] |
raise_vec_bad_ofs ~loc ~vec_name ~ofs ~max_ofs
|
raise_vec_min_dim [Lacaml__utils] |
raise_vec_min_dim ~loc ~vec_name ~dim ~min_dim
|
random [Lacaml__C.Mat] |
random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n
|
random [Lacaml__C.Vec] |
random ?rnd_state ?re_from ?re_range ?im_from ?im_range n
|
random [Lacaml__Z.Mat] |
random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n
|
random [Lacaml__Z.Vec] |
random ?rnd_state ?re_from ?re_range ?im_from ?im_range n
|
random [Lacaml__S.Mat] |
random ?rnd_state ?from ?range m n
|
random [Lacaml__S.Vec] |
random ?rnd_state ?from ?range n
|
random [Lacaml__D.Mat] |
random ?rnd_state ?from ?range m n
|
random [Lacaml__D.Vec] |
random ?rnd_state ?from ?range n
|
reci [Lacaml__C.Mat] |
reci ?m ?n ?br ?bc ?b ?ar ?ac a computes the reciprocal of the elements in
the m by n (sub-)matrix of the matrix a starting in row ar
and column ac .
|
reci [Lacaml__C.Vec] |
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value
of n elements of the vector x using incx as incremental steps.
|
reci [Lacaml__Z.Mat] |
reci ?m ?n ?br ?bc ?b ?ar ?ac a computes the reciprocal of the elements in
the m by n (sub-)matrix of the matrix a starting in row ar
and column ac .
|
reci [Lacaml__Z.Vec] |
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value
of n elements of the vector x using incx as incremental steps.
|
reci [Lacaml__S.Mat] |
reci ?m ?n ?br ?bc ?b ?ar ?ac a computes the reciprocal of the elements in
the m by n (sub-)matrix of the matrix a starting in row ar
and column ac .
|
reci [Lacaml__S.Vec] |
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value
of n elements of the vector x using incx as incremental steps.
|
reci [Lacaml__D.Mat] |
reci ?m ?n ?br ?bc ?b ?ar ?ac a computes the reciprocal of the elements in
the m by n (sub-)matrix of the matrix a starting in row ar
and column ac .
|
reci [Lacaml__D.Vec] |
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value
of n elements of the vector x using incx as incremental steps.
|
relu [Lacaml__S.Mat] |
relu ?m ?n ?br ?bc ?b ?ar ?ac a computes the rectified linear unit
function max(a, 0) of the elements in the m by n sub-matrix of
the matrix a starting in row ar and column ac .
|
relu [Lacaml__S.Vec] |
relu ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the rectified linear
unit function max(x, 0) for n elements of the vector x using incx
as incremental steps.
|
relu [Lacaml__D.Mat] |
relu ?m ?n ?br ?bc ?b ?ar ?ac a computes the rectified linear unit
function max(a, 0) of the elements in the m by n sub-matrix of
the matrix a starting in row ar and column ac .
|
relu [Lacaml__D.Vec] |
relu ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the rectified linear
unit function max(x, 0) for n elements of the vector x using incx
as incremental steps.
|
rev [Lacaml__C.Vec] |
rev x reverses vector x (non-destructive).
|
rev [Lacaml__Z.Vec] |
rev x reverses vector x (non-destructive).
|
rev [Lacaml__S.Vec] |
rev x reverses vector x (non-destructive).
|
rev [Lacaml__D.Vec] |
rev x reverses vector x (non-destructive).
|
rosser [Lacaml__S.Mat] |
|
rosser [Lacaml__D.Mat] |
|
round [Lacaml__S.Mat] |
round ?m ?n ?br ?bc ?b ?ar ?ac a rounds the elements in the m by n
sub-matrix of the matrix a starting in row ar and column ac .
|
round [Lacaml__S.Vec] |
round ?n ?ofsy ?incy ?y ?ofsx ?incx x rounds the n elements of the
vector x using incx as incremental steps.
|
round [Lacaml__D.Mat] |
round ?m ?n ?br ?bc ?b ?ar ?ac a rounds the elements in the m by n
sub-matrix of the matrix a starting in row ar and column ac .
|
round [Lacaml__D.Vec] |
round ?n ?ofsy ?incy ?y ?ofsx ?incx x rounds the n elements of the
vector x using incx as incremental steps.
|
S |
s_str [Lacaml__utils] |
|
sbev [Lacaml__S] |
sbev ?n ?vectors ?zr ?zc ?z ?up ?ofswork ?work ?ofsw ?w ?abr ?abc ab
computes all the eigenvalues and, optionally, eigenvectors of the
real symmetric band matrix ab .
|
sbev [Lacaml__D] |
sbev ?n ?vectors ?zr ?zc ?z ?up ?ofswork ?work ?ofsw ?w ?abr ?abc ab
computes all the eigenvalues and, optionally, eigenvectors of the
real symmetric band matrix ab .
|
sbev_min_lwork [Lacaml__S] |
|
sbev_min_lwork [Lacaml__D] |
|
sbgv [Lacaml__S] |
sbgv ?n ?ka ?kb ?zr ?zc ?z ?up ?work ?ofsw ?w ?ar ?ac a ?br ?bc b
computes all the eigenvalues, and optionally, the eigenvectors of a
real generalized symmetric-definite banded eigenproblem, of the
form a*x=(lambda)*b*x .
|
sbgv [Lacaml__D] |
sbgv ?n ?ka ?kb ?zr ?zc ?z ?up ?work ?ofsw ?w ?ar ?ac a ?br ?bc b
computes all the eigenvalues, and optionally, the eigenvectors of a
real generalized symmetric-definite banded eigenproblem, of the
form a*x=(lambda)*b*x .
|
sbmv [Lacaml__S] |
sbmv ?n ?k ?ofsy ?incy ?y ?ar ?ac a ?up ?alpha ?beta ?ofsx ?incx x see
BLAS documentation!
|
sbmv [Lacaml__D] |
sbmv ?n ?k ?ofsy ?incy ?y ?ar ?ac a ?up ?alpha ?beta ?ofsx ?incx x see
BLAS documentation!
|
scal [Lacaml__C.Mat] |
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
|
scal [Lacaml__C] |
scal ?n alpha ?ofsx ?incx x see BLAS documentation!
|
scal [Lacaml__Z.Mat] |
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
|
scal [Lacaml__Z] |
scal ?n alpha ?ofsx ?incx x see BLAS documentation!
|
scal [Lacaml__S.Mat] |
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
|
scal [Lacaml__S] |
scal ?n alpha ?ofsx ?incx x see BLAS documentation!
|
scal [Lacaml__D.Mat] |
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
|
scal [Lacaml__D] |
scal ?n alpha ?ofsx ?incx x see BLAS documentation!
|
scal_cols [Lacaml__C.Mat] |
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal
function for matrices.
|
scal_cols [Lacaml__Z.Mat] |
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal
function for matrices.
|
scal_cols [Lacaml__S.Mat] |
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal
function for matrices.
|
scal_cols [Lacaml__D.Mat] |
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal
function for matrices.
|
scal_rows [Lacaml__C.Mat] |
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal
function for matrices.
|
scal_rows [Lacaml__Z.Mat] |
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal
function for matrices.
|
scal_rows [Lacaml__S.Mat] |
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal
function for matrices.
|
scal_rows [Lacaml__D.Mat] |
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal
function for matrices.
|
set_dim_defaults [Lacaml__io.Context] |
|
signum [Lacaml__S.Mat] |
signum ?m ?n ?br ?bc ?b ?ar ?ac a computes the sign value (-1 for
negative numbers, 0 (or -0 ) for zero, 1 for positive numbers,
nan for nan ) of the elements in the m by n sub-matrix of the
matrix a starting in row ar and column ac .
|
signum [Lacaml__S.Vec] |
signum ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sign value (-1 for
negative numbers, 0 (or -0 ) for zero, 1 for positive numbers,
nan for nan ) of n elements of the vector x using incx as
incremental steps.
|
signum [Lacaml__D.Mat] |
signum ?m ?n ?br ?bc ?b ?ar ?ac a computes the sign value (-1 for
negative numbers, 0 (or -0 ) for zero, 1 for positive numbers,
nan for nan ) of the elements in the m by n sub-matrix of the
matrix a starting in row ar and column ac .
|
signum [Lacaml__D.Vec] |
signum ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sign value (-1 for
negative numbers, 0 (or -0 ) for zero, 1 for positive numbers,
nan for nan ) of n elements of the vector x using incx as
incremental steps.
|
sin [Lacaml__S.Mat] |
sin ?m ?n ?br ?bc ?b ?ar ?ac a computes the sine of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
sin [Lacaml__S.Vec] |
sin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sine of n elements
of the vector x using incx as incremental steps.
|
sin [Lacaml__D.Mat] |
sin ?m ?n ?br ?bc ?b ?ar ?ac a computes the sine of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
sin [Lacaml__D.Vec] |
sin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sine of n elements
of the vector x using incx as incremental steps.
|
sinh [Lacaml__S.Mat] |
sinh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic sine of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
sinh [Lacaml__S.Vec] |
sinh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic sine of
n elements of the vector x using incx as incremental steps.
|
sinh [Lacaml__D.Mat] |
sinh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic sine of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
sinh [Lacaml__D.Vec] |
sinh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic sine of
n elements of the vector x using incx as incremental steps.
|
softplus [Lacaml__S.Mat] |
softplus ?m ?n ?br ?bc ?b ?ar ?ac a computes the softplus function
log(1 + exp(x) of the elements in the m by n sub-matrix of the
matrix a starting in row ar and column ac .
|
softplus [Lacaml__S.Vec] |
softplus ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the softplus function
log(1 + exp(x) for n elements of the vector x using incx
as incremental steps.
|
softplus [Lacaml__D.Mat] |
softplus ?m ?n ?br ?bc ?b ?ar ?ac a computes the softplus function
log(1 + exp(x) of the elements in the m by n sub-matrix of the
matrix a starting in row ar and column ac .
|
softplus [Lacaml__D.Vec] |
softplus ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the softplus function
log(1 + exp(x) for n elements of the vector x using incx
as incremental steps.
|
softsign [Lacaml__S.Mat] |
softsign ?m ?n ?br ?bc ?b ?ar ?ac a computes the softsign function
x / (1 + abs(x)) of the elements in the m by n sub-matrix of the
matrix a starting in row ar and column ac .
|
softsign [Lacaml__S.Vec] |
softsign ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the softsign function
x / (1 + abs(x)) for n elements of the vector x using incx
as incremental steps.
|
softsign [Lacaml__D.Mat] |
softsign ?m ?n ?br ?bc ?b ?ar ?ac a computes the softsign function
x / (1 + abs(x)) of the elements in the m by n sub-matrix of the
matrix a starting in row ar and column ac .
|
softsign [Lacaml__D.Vec] |
softsign ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the softsign function
x / (1 + abs(x)) for n elements of the vector x using incx
as incremental steps.
|
sort [Lacaml__C.Vec] |
sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing
order according to the comparison function cmp .
|
sort [Lacaml__Z.Vec] |
sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing
order according to the comparison function cmp .
|
sort [Lacaml__S.Vec] |
sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing
order according to the comparison function cmp .
|
sort [Lacaml__D.Vec] |
sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing
order according to the comparison function cmp .
|
spsv [Lacaml__C] |
spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the
solution to the real system of linear equations a * X = b ,
where a is an n -by-n symmetric matrix stored in packed
format and X and b are n -by-nrhs matrices.
|
spsv [Lacaml__Z] |
spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the
solution to the real system of linear equations a * X = b ,
where a is an n -by-n symmetric matrix stored in packed
format and X and b are n -by-nrhs matrices.
|
spsv [Lacaml__S] |
spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the
solution to the real system of linear equations a * X = b ,
where a is an n -by-n symmetric matrix stored in packed
format and X and b are n -by-nrhs matrices.
|
spsv [Lacaml__D] |
spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the
solution to the real system of linear equations a * X = b ,
where a is an n -by-n symmetric matrix stored in packed
format and X and b are n -by-nrhs matrices.
|
sqr [Lacaml__S.Mat] |
sqr ?m ?n ?br ?bc ?b ?ar ?ac a computes the square of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
sqr [Lacaml__S.Vec] |
sqr ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square
of n elements of the vector x using incx as incremental
steps.
|
sqr [Lacaml__D.Mat] |
sqr ?m ?n ?br ?bc ?b ?ar ?ac a computes the square of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
sqr [Lacaml__D.Vec] |
sqr ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square
of n elements of the vector x using incx as incremental
steps.
|
sqr_nrm2 [Lacaml__C.Vec] |
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of
the 2-norm (Euclidean norm) of vector x separated by incx
incremental steps.
|
sqr_nrm2 [Lacaml__Z.Vec] |
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of
the 2-norm (Euclidean norm) of vector x separated by incx
incremental steps.
|
sqr_nrm2 [Lacaml__S.Vec] |
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of
the 2-norm (Euclidean norm) of vector x separated by incx
incremental steps.
|
sqr_nrm2 [Lacaml__D.Vec] |
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of
the 2-norm (Euclidean norm) of vector x separated by incx
incremental steps.
|
sqrt [Lacaml__S.Mat] |
sqrt ?m ?n ?br ?bc ?b ?ar ?ac a computes the square root of the
elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
sqrt [Lacaml__S.Vec] |
sqrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square root
of n elements of the vector x using incx as incremental
steps.
|
sqrt [Lacaml__D.Mat] |
sqrt ?m ?n ?br ?bc ?b ?ar ?ac a computes the square root of the
elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
sqrt [Lacaml__D.Vec] |
sqrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square root
of n elements of the vector x using incx as incremental
steps.
|
ssqr [Lacaml__C.Vec] |
ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences
of the n elements in vector x from constant c , separated
by incx incremental steps.
|
ssqr [Lacaml__Z.Vec] |
ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences
of the n elements in vector x from constant c , separated
by incx incremental steps.
|
ssqr [Lacaml__S.Vec] |
ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences
of the n elements in vector x from constant c , separated
by incx incremental steps.
|
ssqr [Lacaml__D.Vec] |
ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences
of the n elements in vector x from constant c , separated
by incx incremental steps.
|
ssqr_diff [Lacaml__C.Mat] |
ssqr_diff ?m ?n ?ar ?ac a ?br ?bc b
|
ssqr_diff [Lacaml__C.Vec] |
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of
squared differences of n elements of vectors x and y , using
incx and incy as incremental steps respectively.
|
ssqr_diff [Lacaml__Z.Mat] |
ssqr_diff ?m ?n ?ar ?ac a ?br ?bc b
|
ssqr_diff [Lacaml__Z.Vec] |
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of
squared differences of n elements of vectors x and y , using
incx and incy as incremental steps respectively.
|
ssqr_diff [Lacaml__S.Mat] |
ssqr_diff ?m ?n ?ar ?ac a ?br ?bc b
|
ssqr_diff [Lacaml__S.Vec] |
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of
squared differences of n elements of vectors x and y , using
incx and incy as incremental steps respectively.
|
ssqr_diff [Lacaml__D.Mat] |
ssqr_diff ?m ?n ?ar ?ac a ?br ?bc b
|
ssqr_diff [Lacaml__D.Vec] |
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of
squared differences of n elements of vectors x and y , using
incx and incy as incremental steps respectively.
|
sub [Lacaml__C.Mat] |
sub ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the difference of the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
sub [Lacaml__C.Vec] |
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
sub [Lacaml__Z.Mat] |
sub ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the difference of the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
sub [Lacaml__Z.Vec] |
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
sub [Lacaml__S.Mat] |
sub ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the difference of the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
sub [Lacaml__S.Vec] |
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
sub [Lacaml__D.Mat] |
sub ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the difference of the
m by n sub-matrix of the matrix a starting in row ar and column
ac with the corresponding sub-matrix of the matrix b starting in row
br and column bc .
|
sub [Lacaml__D.Vec] |
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively.
|
sum [Lacaml__C.Mat] |
sum ?m ?n ?ar ?ac a computes the sum of all elements in
the m -by-n submatrix starting at row ar and column ac .
|
sum [Lacaml__C.Vec] |
sum ?n ?ofsx ?incx x computes the sum of the n elements in
vector x , separated by incx incremental steps.
|
sum [Lacaml__Z.Mat] |
sum ?m ?n ?ar ?ac a computes the sum of all elements in
the m -by-n submatrix starting at row ar and column ac .
|
sum [Lacaml__Z.Vec] |
sum ?n ?ofsx ?incx x computes the sum of the n elements in
vector x , separated by incx incremental steps.
|
sum [Lacaml__S.Mat] |
sum ?m ?n ?ar ?ac a computes the sum of all elements in
the m -by-n submatrix starting at row ar and column ac .
|
sum [Lacaml__S.Vec] |
sum ?n ?ofsx ?incx x computes the sum of the n elements in
vector x , separated by incx incremental steps.
|
sum [Lacaml__D.Mat] |
sum ?m ?n ?ar ?ac a computes the sum of all elements in
the m -by-n submatrix starting at row ar and column ac .
|
sum [Lacaml__D.Vec] |
sum ?n ?ofsx ?incx x computes the sum of the n elements in
vector x , separated by incx incremental steps.
|
swap [Lacaml__C.Mat] |
swap ?m ?n ?ar ?ac a ?br ?bc b swaps the contents of (sub-matrices)
a and b .
|
swap [Lacaml__C] |
swap ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
swap [Lacaml__Z.Mat] |
swap ?m ?n ?ar ?ac a ?br ?bc b swaps the contents of (sub-matrices)
a and b .
|
swap [Lacaml__Z] |
swap ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
swap [Lacaml__S.Mat] |
swap ?m ?n ?ar ?ac a ?br ?bc b swaps the contents of (sub-matrices)
a and b .
|
swap [Lacaml__S] |
swap ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
swap [Lacaml__D.Mat] |
swap ?m ?n ?ar ?ac a ?br ?bc b swaps the contents of (sub-matrices)
a and b .
|
swap [Lacaml__D] |
swap ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!
|
sycon [Lacaml__C] |
sycon ?n ?up ?ipiv ?anorm ?work ?ar ?ac a
|
sycon [Lacaml__Z] |
sycon ?n ?up ?ipiv ?anorm ?work ?ar ?ac a
|
sycon [Lacaml__S] |
sycon ?n ?up ?ipiv ?anorm ?work ?iwork ?ar ?ac a
|
sycon [Lacaml__D] |
sycon ?n ?up ?ipiv ?anorm ?work ?iwork ?ar ?ac a
|
sycon_min_liwork [Lacaml__S] |
|
sycon_min_liwork [Lacaml__D] |
|
sycon_min_lwork [Lacaml__C] |
|
sycon_min_lwork [Lacaml__Z] |
|
sycon_min_lwork [Lacaml__S] |
|
sycon_min_lwork [Lacaml__D] |
|
syev [Lacaml__S] |
syev ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes
all eigenvalues and, optionally, eigenvectors of the real symmetric
matrix a .
|
syev [Lacaml__D] |
syev ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes
all eigenvalues and, optionally, eigenvectors of the real symmetric
matrix a .
|
syev_min_lwork [Lacaml__S] |
|
syev_min_lwork [Lacaml__D] |
|
syev_opt_lwork [Lacaml__S] |
syev_opt_lwork ?n ?vectors ?up ?ar ?ac a
|
syev_opt_lwork [Lacaml__D] |
syev_opt_lwork ?n ?vectors ?up ?ar ?ac a
|
syevd [Lacaml__S] |
syevd ?n ?vectors ?up ?ofswork ?work ?iwork ?ofsw ?w ?ar ?ac a
computes all eigenvalues and, optionally, eigenvectors of the real
symmetric matrix a .
|
syevd [Lacaml__D] |
syevd ?n ?vectors ?up ?ofswork ?work ?iwork ?ofsw ?w ?ar ?ac a
computes all eigenvalues and, optionally, eigenvectors of the real
symmetric matrix a .
|
syevd_min_liwork [Lacaml__S] |
syevd_min_liwork vectors n
|
syevd_min_liwork [Lacaml__D] |
syevd_min_liwork vectors n
|
syevd_min_lwork [Lacaml__S] |
syevd_min_lwork vectors n
|
syevd_min_lwork [Lacaml__D] |
syevd_min_lwork vectors n
|
syevd_opt_l_li_work [Lacaml__S] |
syevd_opt_l_li_iwork ?n ?vectors ?up ?ar ?ac a
|
syevd_opt_l_li_work [Lacaml__D] |
syevd_opt_l_li_iwork ?n ?vectors ?up ?ar ?ac a
|
syevd_opt_liwork [Lacaml__S] |
syevd_opt_liwork ?n ?vectors ?up ?ar ?ac a
|
syevd_opt_liwork [Lacaml__D] |
syevd_opt_liwork ?n ?vectors ?up ?ar ?ac a
|
syevd_opt_lwork [Lacaml__S] |
syevd_opt_lwork ?n ?vectors ?up ?ar ?ac a
|
syevd_opt_lwork [Lacaml__D] |
syevd_opt_lwork ?n ?vectors ?up ?ar ?ac a
|
syevr [Lacaml__S] |
syevr
?n ?vectors ?range ?up ?abstol ?work ?iwork
?ofsw ?w ?zr ?zc ?z ?isuppz ?ar ?ac a
range is either `A for computing all eigenpairs, `V (vl, vu)
defines the lower and upper range of computed eigenvalues, `I (il,
iu) defines the indexes of the computed eigenpairs, which are sorted
in ascending order.
|
syevr [Lacaml__D] |
syevr
?n ?vectors ?range ?up ?abstol ?work ?iwork
?ofsw ?w ?zr ?zc ?z ?isuppz ?ar ?ac a
range is either `A for computing all eigenpairs, `V (vl, vu)
defines the lower and upper range of computed eigenvalues, `I (il,
iu) defines the indexes of the computed eigenpairs, which are sorted
in ascending order.
|
syevr_min_liwork [Lacaml__S] |
|
syevr_min_liwork [Lacaml__D] |
|
syevr_min_lwork [Lacaml__S] |
|
syevr_min_lwork [Lacaml__D] |
|
syevr_opt_l_li_work [Lacaml__S] |
syevr_opt_l_li_iwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
|
syevr_opt_l_li_work [Lacaml__D] |
syevr_opt_l_li_iwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
|
syevr_opt_liwork [Lacaml__S] |
syevr_opt_liwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
|
syevr_opt_liwork [Lacaml__D] |
syevr_opt_liwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
|
syevr_opt_lwork [Lacaml__S] |
syevr_opt_lwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
|
syevr_opt_lwork [Lacaml__D] |
syevr_opt_lwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
|
sygv [Lacaml__S] |
sygv ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a
computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the
form a*x=(lambda)*b*x , a*b*x=(lambda)*x , or b*a*x=(lambda)*x .
|
sygv [Lacaml__D] |
sygv ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a
computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the
form a*x=(lambda)*b*x , a*b*x=(lambda)*x , or b*a*x=(lambda)*x .
|
sygv_opt_lwork [Lacaml__S] |
sygv_opt_lwork ?n ?vectors ?up ?ar ?ac a ?br ?bc b
|
sygv_opt_lwork [Lacaml__D] |
sygv_opt_lwork ?n ?vectors ?up ?ar ?ac a ?br ?bc b
|
symm [Lacaml__C] |
symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b
see BLAS documentation!
|
symm [Lacaml__Z] |
symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b
see BLAS documentation!
|
symm [Lacaml__S] |
symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b
see BLAS documentation!
|
symm [Lacaml__D] |
symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b
see BLAS documentation!
|
symm2_trace [Lacaml__C.Mat] |
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the
trace of the product of the symmetric (sub-)matrices a and
b .
|
symm2_trace [Lacaml__Z.Mat] |
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the
trace of the product of the symmetric (sub-)matrices a and
b .
|
symm2_trace [Lacaml__S.Mat] |
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the
trace of the product of the symmetric (sub-)matrices a and
b .
|
symm2_trace [Lacaml__D.Mat] |
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the
trace of the product of the symmetric (sub-)matrices a and
b .
|
symm_get_params [Lacaml__utils] |
|
symv [Lacaml__C] |
symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
symv [Lacaml__Z] |
symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
symv [Lacaml__S] |
symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
symv [Lacaml__D] |
symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
symv_get_params [Lacaml__utils] |
|
syr [Lacaml__S] |
syr ?n ?alpha ?up ?ofsx ?incx x ?ar ?ac a see BLAS documentation!
|
syr [Lacaml__D] |
syr ?n ?alpha ?up ?ofsx ?incx x ?ar ?ac a see BLAS documentation!
|
syr2k [Lacaml__C] |
syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b
see BLAS documentation!
|
syr2k [Lacaml__Z] |
syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b
see BLAS documentation!
|
syr2k [Lacaml__S] |
syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b
see BLAS documentation!
|
syr2k [Lacaml__D] |
syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b
see BLAS documentation!
|
syr2k_get_params [Lacaml__utils] |
|
syrk [Lacaml__C] |
syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a
see BLAS documentation!
|
syrk [Lacaml__Z] |
syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a
see BLAS documentation!
|
syrk [Lacaml__S] |
syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a
see BLAS documentation!
|
syrk [Lacaml__D] |
syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a
see BLAS documentation!
|
syrk_diag [Lacaml__C.Mat] |
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a
computes the diagonal of the symmetric rank-k product of the
(sub-)matrix a , multiplying it with alpha and adding beta
times y , storing the result in y starting at the specified
offset.
|
syrk_diag [Lacaml__Z.Mat] |
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a
computes the diagonal of the symmetric rank-k product of the
(sub-)matrix a , multiplying it with alpha and adding beta
times y , storing the result in y starting at the specified
offset.
|
syrk_diag [Lacaml__S.Mat] |
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a
computes the diagonal of the symmetric rank-k product of the
(sub-)matrix a , multiplying it with alpha and adding beta
times y , storing the result in y starting at the specified
offset.
|
syrk_diag [Lacaml__D.Mat] |
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a
computes the diagonal of the symmetric rank-k product of the
(sub-)matrix a , multiplying it with alpha and adding beta
times y , storing the result in y starting at the specified
offset.
|
syrk_get_params [Lacaml__utils] |
|
syrk_trace [Lacaml__C.Mat] |
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a
or a * a' , whichever is more efficient (results are identical), of the
(sub-)matrix a multiplied by its own transpose.
|
syrk_trace [Lacaml__Z.Mat] |
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a
or a * a' , whichever is more efficient (results are identical), of the
(sub-)matrix a multiplied by its own transpose.
|
syrk_trace [Lacaml__S.Mat] |
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a
or a * a' , whichever is more efficient (results are identical), of the
(sub-)matrix a multiplied by its own transpose.
|
syrk_trace [Lacaml__D.Mat] |
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a
or a * a' , whichever is more efficient (results are identical), of the
(sub-)matrix a multiplied by its own transpose.
|
sysv [Lacaml__C] |
sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is an N-by-N symmetric matrix and X and b are n -by-nrhs
matrices.
|
sysv [Lacaml__Z] |
sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is an N-by-N symmetric matrix and X and b are n -by-nrhs
matrices.
|
sysv [Lacaml__S] |
sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is an N-by-N symmetric matrix and X and b are n -by-nrhs
matrices.
|
sysv [Lacaml__D] |
sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the
solution to a real system of linear equations a * X = b , where
a is an N-by-N symmetric matrix and X and b are n -by-nrhs
matrices.
|
sysv_opt_lwork [Lacaml__C] |
sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b
|
sysv_opt_lwork [Lacaml__Z] |
sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b
|
sysv_opt_lwork [Lacaml__S] |
sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b
|
sysv_opt_lwork [Lacaml__D] |
sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b
|
sytrf [Lacaml__C] |
sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of
the real symmetric matrix a using the Bunch-Kaufman diagonal
pivoting method.
|
sytrf [Lacaml__Z] |
sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of
the real symmetric matrix a using the Bunch-Kaufman diagonal
pivoting method.
|
sytrf [Lacaml__S] |
sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of
the real symmetric matrix a using the Bunch-Kaufman diagonal
pivoting method.
|
sytrf [Lacaml__D] |
sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of
the real symmetric matrix a using the Bunch-Kaufman diagonal
pivoting method.
|
sytrf_err [Lacaml__utils] |
|
sytrf_fact_err [Lacaml__utils] |
|
sytrf_get_ipiv [Lacaml__utils] |
|
sytrf_min_lwork [Lacaml__C] |
|
sytrf_min_lwork [Lacaml__Z] |
|
sytrf_min_lwork [Lacaml__S] |
|
sytrf_min_lwork [Lacaml__D] |
|
sytrf_opt_lwork [Lacaml__C] |
sytrf_opt_lwork ?n ?up ?ar ?ac a
|
sytrf_opt_lwork [Lacaml__Z] |
sytrf_opt_lwork ?n ?up ?ar ?ac a
|
sytrf_opt_lwork [Lacaml__S] |
sytrf_opt_lwork ?n ?up ?ar ?ac a
|
sytrf_opt_lwork [Lacaml__D] |
sytrf_opt_lwork ?n ?up ?ar ?ac a
|
sytri [Lacaml__C] |
sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the
real symmetric indefinite matrix a using the factorization a =
U*D*U**T or a = L*D*L**T computed by Lacaml__C.sytrf .
|
sytri [Lacaml__Z] |
sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the
real symmetric indefinite matrix a using the factorization a =
U*D*U**T or a = L*D*L**T computed by Lacaml__Z.sytrf .
|
sytri [Lacaml__S] |
sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the
real symmetric indefinite matrix a using the factorization a =
U*D*U**T or a = L*D*L**T computed by Lacaml__S.sytrf .
|
sytri [Lacaml__D] |
sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the
real symmetric indefinite matrix a using the factorization a =
U*D*U**T or a = L*D*L**T computed by Lacaml__D.sytrf .
|
sytri_min_lwork [Lacaml__C] |
|
sytri_min_lwork [Lacaml__Z] |
|
sytri_min_lwork [Lacaml__S] |
|
sytri_min_lwork [Lacaml__D] |
|
sytrs [Lacaml__C] |
sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of
linear equations a *X = b with a real symmetric matrix a
using the factorization a = U*D*U**T or a = L*D*L**T computed
by Lacaml__C.sytrf .
|
sytrs [Lacaml__Z] |
sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of
linear equations a *X = b with a real symmetric matrix a
using the factorization a = U*D*U**T or a = L*D*L**T computed
by Lacaml__Z.sytrf .
|
sytrs [Lacaml__S] |
sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of
linear equations a *X = b with a real symmetric matrix a
using the factorization a = U*D*U**T or a = L*D*L**T computed
by Lacaml__S.sytrf .
|
sytrs [Lacaml__D] |
sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of
linear equations a *X = b with a real symmetric matrix a
using the factorization a = U*D*U**T or a = L*D*L**T computed
by Lacaml__D.sytrf .
|
T |
tan [Lacaml__S.Mat] |
tan ?m ?n ?br ?bc ?b ?ar ?ac a computes the tangent of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
tan [Lacaml__S.Vec] |
tan ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the tangent of n elements
of the vector x using incx as incremental steps.
|
tan [Lacaml__D.Mat] |
tan ?m ?n ?br ?bc ?b ?ar ?ac a computes the tangent of the elements in
the m by n sub-matrix of the matrix a starting in row ar
and column ac .
|
tan [Lacaml__D.Vec] |
tan ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the tangent of n elements
of the vector x using incx as incremental steps.
|
tanh [Lacaml__S.Mat] |
tanh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic tangent of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
tanh [Lacaml__S.Vec] |
tanh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic tangent of
n elements of the vector x using incx as incremental steps.
|
tanh [Lacaml__D.Mat] |
tanh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic tangent of
the elements in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
tanh [Lacaml__D.Vec] |
tanh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic tangent of
n elements of the vector x using incx as incremental steps.
|
tau_str [Lacaml__utils] |
|
tbtrs [Lacaml__C] |
tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b
solves a triangular system of the form a * X = b or a **T * X = b ,
where a is a triangular band matrix of order n , and b is
an n -by-nrhs matrix.
|
tbtrs [Lacaml__Z] |
tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b
solves a triangular system of the form a * X = b or a **T * X = b ,
where a is a triangular band matrix of order n , and b is
an n -by-nrhs matrix.
|
tbtrs [Lacaml__S] |
tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b
solves a triangular system of the form a * X = b or a **T * X = b ,
where a is a triangular band matrix of order n , and b is
an n -by-nrhs matrix.
|
tbtrs [Lacaml__D] |
tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b
solves a triangular system of the form a * X = b or a **T * X = b ,
where a is a triangular band matrix of order n , and b is
an n -by-nrhs matrix.
|
tbtrs_err [Lacaml__utils] |
|
to_array [Lacaml__C.Mat] |
|
to_array [Lacaml__C.Vec] |
|
to_array [Lacaml__Z.Mat] |
|
to_array [Lacaml__Z.Vec] |
|
to_array [Lacaml__S.Mat] |
|
to_array [Lacaml__S.Vec] |
|
to_array [Lacaml__D.Mat] |
|
to_array [Lacaml__D.Vec] |
|
to_col_vecs [Lacaml__C.Mat] |
|
to_col_vecs [Lacaml__Z.Mat] |
|
to_col_vecs [Lacaml__S.Mat] |
|
to_col_vecs [Lacaml__D.Mat] |
|
to_col_vecs_list [Lacaml__C.Mat] |
|
to_col_vecs_list [Lacaml__Z.Mat] |
|
to_col_vecs_list [Lacaml__S.Mat] |
|
to_col_vecs_list [Lacaml__D.Mat] |
|
to_list [Lacaml__C.Mat] |
|
to_list [Lacaml__C.Vec] |
|
to_list [Lacaml__Z.Mat] |
|
to_list [Lacaml__Z.Vec] |
|
to_list [Lacaml__S.Mat] |
|
to_list [Lacaml__S.Vec] |
|
to_list [Lacaml__D.Mat] |
|
to_list [Lacaml__D.Vec] |
|
toeplitz [Lacaml__S.Mat] |
|
toeplitz [Lacaml__D.Mat] |
|
tpXv_get_params [Lacaml__utils] |
|
tpmv [Lacaml__C] |
tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x
see BLAS documentation!
|
tpmv [Lacaml__Z] |
tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x
see BLAS documentation!
|
tpmv [Lacaml__S] |
tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x
see BLAS documentation!
|
tpmv [Lacaml__D] |
tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x
see BLAS documentation!
|
tpsv [Lacaml__C] |
tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x
see BLAS documentation!
|
tpsv [Lacaml__Z] |
tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x
see BLAS documentation!
|
tpsv [Lacaml__S] |
tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x
see BLAS documentation!
|
tpsv [Lacaml__D] |
tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x
see BLAS documentation!
|
trXm_get_params [Lacaml__utils] |
|
trXv_get_params [Lacaml__utils] |
|
trace [Lacaml__C.Mat] |
|
trace [Lacaml__Z.Mat] |
|
trace [Lacaml__S.Mat] |
|
trace [Lacaml__D.Mat] |
|
transpose_copy [Lacaml__C.Mat] |
transpose_copy ?m ?n ?br ?bc ?b ?ar ?ac a
|
transpose_copy [Lacaml__Z.Mat] |
transpose_copy ?m ?n ?br ?bc ?b ?ar ?ac a
|
transpose_copy [Lacaml__S.Mat] |
transpose_copy ?m ?n ?br ?bc ?b ?ar ?ac a
|
transpose_copy [Lacaml__D.Mat] |
transpose_copy ?m ?n ?br ?bc ?b ?ar ?ac a
|
trmm [Lacaml__C] |
trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b
see BLAS documentation!
|
trmm [Lacaml__Z] |
trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b
see BLAS documentation!
|
trmm [Lacaml__S] |
trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b
see BLAS documentation!
|
trmm [Lacaml__D] |
trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b
see BLAS documentation!
|
trmv [Lacaml__C] |
trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
trmv [Lacaml__Z] |
trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
trmv [Lacaml__S] |
trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
trmv [Lacaml__D] |
trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
trsm [Lacaml__C] |
trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b
see BLAS documentation!
|
trsm [Lacaml__Z] |
trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b
see BLAS documentation!
|
trsm [Lacaml__S] |
trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b
see BLAS documentation!
|
trsm [Lacaml__D] |
trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b
see BLAS documentation!
|
trsv [Lacaml__C] |
trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
trsv [Lacaml__Z] |
trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
trsv [Lacaml__S] |
trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
trsv [Lacaml__D] |
trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x
see BLAS documentation!
|
trtri [Lacaml__C] |
trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real
upper or lower triangular matrix a .
|
trtri [Lacaml__Z] |
trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real
upper or lower triangular matrix a .
|
trtri [Lacaml__S] |
trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real
upper or lower triangular matrix a .
|
trtri [Lacaml__D] |
trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real
upper or lower triangular matrix a .
|
trtri_err [Lacaml__utils] |
|
trtrs [Lacaml__C] |
trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a
triangular system of the form a * X = b or a **T * X = n ,
where a is a triangular matrix of order n , and b is an
n -by-nrhs matrix.
|
trtrs [Lacaml__Z] |
trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a
triangular system of the form a * X = b or a **T * X = n ,
where a is a triangular matrix of order n , and b is an
n -by-nrhs matrix.
|
trtrs [Lacaml__S] |
trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a
triangular system of the form a * X = b or a **T * X = n ,
where a is a triangular matrix of order n , and b is an
n -by-nrhs matrix.
|
trtrs [Lacaml__D] |
trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a
triangular system of the form a * X = b or a **T * X = n ,
where a is a triangular matrix of order n , and b is an
n -by-nrhs matrix.
|
trtrs_err [Lacaml__utils] |
|
trunc [Lacaml__S.Mat] |
trunc ?m ?n ?br ?bc ?b ?ar ?ac a computes the truncation of the elements
in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
trunc [Lacaml__S.Vec] |
trunc ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the truncation of the n
elements of the vector x using incx as incremental steps.
|
trunc [Lacaml__D.Mat] |
trunc ?m ?n ?br ?bc ?b ?ar ?ac a computes the truncation of the elements
in the m by n sub-matrix of the matrix a starting in
row ar and column ac .
|
trunc [Lacaml__D.Vec] |
trunc ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the truncation of the n
elements of the vector x using incx as incremental steps.
|
U |
u_str [Lacaml__utils] |
|
um_str [Lacaml__utils] |
|
un_str [Lacaml__utils] |
|
unpacked [Lacaml__C.Mat] |
|
unpacked [Lacaml__Z.Mat] |
|
unpacked [Lacaml__S.Mat] |
|
unpacked [Lacaml__D.Mat] |
|
V |
vandermonde [Lacaml__S.Mat] |
|
vandermonde [Lacaml__D.Mat] |
|
version [Lacaml_version] |
|
vertical_default [Lacaml__io.Context] |
|
vm_str [Lacaml__utils] |
|
vn_str [Lacaml__utils] |
|
vs_str [Lacaml__utils] |
|
vsc_str [Lacaml__utils] |
|
vsr_str [Lacaml__utils] |
|
vt_str [Lacaml__utils] |
|
W |
w_str [Lacaml__utils] |
|
wi_str [Lacaml__utils] |
|
wilkinson [Lacaml__S.Mat] |
|
wilkinson [Lacaml__D.Mat] |
|
work_str [Lacaml__utils] |
|
wr_str [Lacaml__utils] |
|
X |
x_str [Lacaml__utils] |
|
xlange_get_params [Lacaml__utils] |
|
xxcon_err [Lacaml__utils] |
|
xxev_get_params [Lacaml__utils] |
|
xxev_get_wx [Lacaml__utils] |
|
xxsv_a_err [Lacaml__utils] |
|
xxsv_err [Lacaml__utils] |
|
xxsv_get_ipiv [Lacaml__utils] |
|
xxsv_get_params [Lacaml__utils] |
|
xxsv_ind_err [Lacaml__utils] |
|
xxsv_lu_err [Lacaml__utils] |
|
xxsv_pos_err [Lacaml__utils] |
|
xxsv_work_err [Lacaml__utils] |
|
xxtri_err [Lacaml__utils] |
|
xxtri_singular_err [Lacaml__utils] |
|
xxtrs_err [Lacaml__utils] |
|
xxtrs_get_params [Lacaml__utils] |
|
Y |
y_str [Lacaml__utils] |
|
Z |
z_str [Lacaml__utils] |
|
zmxy [Lacaml__C.Vec] |
zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively, and substracts the result from
and stores it in the specified range in z .
|
zmxy [Lacaml__Z.Vec] |
zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively, and substracts the result from
and stores it in the specified range in z .
|
zmxy [Lacaml__S.Vec] |
zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively, and substracts the result from
and stores it in the specified range in z .
|
zmxy [Lacaml__D.Vec] |
zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively, and substracts the result from
and stores it in the specified range in z .
|
zpxy [Lacaml__C.Vec] |
zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively, and adds the result to and stores it
in the specified range in z .
|
zpxy [Lacaml__Z.Vec] |
zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively, and adds the result to and stores it
in the specified range in z .
|
zpxy [Lacaml__S.Vec] |
zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively, and adds the result to and stores it
in the specified range in z .
|
zpxy [Lacaml__D.Vec] |
zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n
elements of vectors x and y elementwise, using incx and incy
as incremental steps respectively, and adds the result to and stores it
in the specified range in z .
|